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Abstract Determining the similarity between images

is a fundamental step in many applications, such as im-

age categorization, image labeling and image retrieval.

Automatic methods for similarity estimation often fall

short when semantic context is required for the task,

raising the need for human judgment. Such judgments

can be collected via crowdsourcing techniques, based on

tasks posed to web users. However, to allow the estima-

tion of image similarities in reasonable time and cost,

the generation of tasks to the crowd must be done in a

careful manner. We observe that distances within local

neighborhoods provide valuable information that allows

a quick and accurate construction of the global simi-

larity metric. This key observation leads to a solution

based on clustering tasks, comparing relatively similar

images. In each query, crowd members cluster a small

set of images into bins. The results yield many relative
similarities between images, which are used to construct

a global image similarity metric. This metric is progres-

sively refined, and serves to generate finer, more local

queries in subsequent iterations. We demonstrate the

effectiveness of our method on datasets where ground

truth is available, and on a collection of images where

semantic similarities cannot be quantified. In particu-

lar, we show that our method outperforms alternative

baseline approaches, and prove the usefulness of cluster-

ing queries, and of our progressive refinement process.

1 Introduction

In recent years, there have been many advances in im-

age capturing capabilities of mobile devices, encourag-

ing end users to capture more images of higher quality.
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As a result, there is an abundance of constantly growing

collections of images, both on personal computers and

on websites such as Facebook, Flickr and Instagram.

Such vast collections require efficient methods for image

categorization, image-labeling, and in particular image

retrieval, which allows users to quickly locate an im-

age suitable for their needs. These methods necessarily

rely on the availability of pairwise similarities between

images in the collection.

It is extremely hard to define a distance metric that

would capture well the intuitive or semantic similar-

ity between images. State-of-the-art analytical methods

for computing such a metric fall short when similarities

are derived from a broad semantic context. These may

include elusive relations such as a similar emotion or

sensation evoked by the images (e.g., images that con-

vey “fear” or “comfort”); images of things which are

semantically related (e.g., different types of garden fur-

niture); likeness between the photographed people; and

so on. Consider, for instance, the similarity between the

movie posters in Figure 1. Identifying such similarities

is usually easily done by a human observer, but pose a

hard computational problem nonetheless.

The natural solution is thus gathering information

about semantic similarities between images from peo-

ple, for example using a crowdsourcing technique.1 This

approach was taken in recent work [9,13] to collect style

similarity measures. The typical comparison task that

the crowd performs is of the following form: given three

images A, B, and C, choose whether A is more simi-

lar to B or to C (a triplet query). Assuming consistent

query responses, querying every image triplet yields the

1 Crowdsourcing is a general name for processes that in-
volve posing many small-scale tasks to the crowd of web users,
and piecing together the crowd’s answers to achieve a larger-
scale goal, such as constructing a large knowledge base.
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Fig. 1: Nearest neighbors of the center image in a collection of movie posters, computed using image descriptors

(left), and crowdsourced queries (right). Smaller images mark farther neighbors.

full relative similarity metric over the set of images.

However, the number of triplets is prohibitively large.

Thus, typically only a sample of the triplets are queried

and the rest are estimated based on extracted image

features [9,13].

Another challenge in this respect is that people often

need context in order to perform comparison tasks. For

example, consider the triplet in Figure 2. Is the image

of a bridge in London (b) more similar to another image

of a different bridge in London from a different angle

(c) or to an image of a Parisian bridge from the same

angle (a)? In a larger context, it often becomes clearer

which option is more reasonable, e.g, in the context of

Figure 3 image (b) is more similar to (c) than (a).

In this work, we propose an alternative approach for

learning image similarities based on clustering queries

posed to the crowd. Instead of queries of three images,

crowd members are given a small set of images and are

asked to cluster them into bins of similar images us-

ing a drag-and-drop graphical UI (see Figure 4). While

a single clustering task requires more effort than com-

(a) (b) (c)

Fig. 2: Without context, similarity between images can

be ambiguous.

Fig. 3: With context, it can be seen that images belong

to two distinctive locations, London and Paris.

paring three images, our approach has two important

advantages. First, the results of a single clustering task

provide a great deal of information that is equivalent

to many triplet comparison tasks: images placed in the

same bin are considered closer to one another than to

images in other bins. Second, each query provides crowd

members with additional context that assists them in

performing a more faithful and meaningful comparison.

A key observation of this work is that a similarity

metric can be constructed more efficiently by performing

comparisons on similar images rather than non-similar

ones. This is true in particular in the context of seman-

tic similarities, where local similarities are often more

meaningful. Following this observation, we develop a

novel, adaptive algorithm that aims to generate queries

that are as local as possible. The challenge here is that

similarities are unknown in advance. Thus, our algo-

rithm works iteratively. At each phase we generate and

pose clustering queries to the crowd. As information

is collected, we progressively refine the queries to fo-

cus on similar images in a narrower local neighborhood.

Local similarity comparisons are embedded in Euclid-

ian space to obtain a refined estimation for the global

similarity metric. This refined metric is then leveraged

for computing more locally-focused queries in the next

phase. This progressive method efficiently converges to

a meaningful similarity estimate.

Evaluation and experimental study. To test the effi-

ciency of our approach, we implement our technique

in a prototype system, and use it to conduct a thor-

ough experimental study, with both synthetic and real

crowd data. First, we test our technique over two im-

age datasets where the ground truth is known, examine

the results and compare them to a baseline approach

that uses the same number of queries but chooses them

randomly. Second, we compute the k-NN images for

real-world image datasets, where the ground truth is

unknown, and evaluate the results manually. Last, we

study the effect of parameters such as the number of
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phases and queries in a series of synthetic experiments.

Our experimental results prove the efficiency of our ap-

proach for computing semantic image similarity based

solely on the answers of the crowd, while using a rela-

tively small number of clustering queries.

2 Related Work

The classification of images is a well-studied problem. A

common paradigm is based on image descriptors, such

as the color histogram of images, SIFT based descrip-

tors [8], or GIST descriptors [12]. The distance between

two images is defined as the Euclidean distance between

the image descriptors, on top of which machine learn-

ing techniques can be employed to find similarities or

clusters of the images (e.g., [17,23]). Other methods em-

ploy a bag of features (BoF) approach, using visual seg-

ments [15] and/or textual annotations, either attached

to the images manually or from the textual context of

a web page (e.g., [17,23]). However, such methods fall

short when classification relies on semantically-rich fea-

tures, which may be hard to learn from the images, and

may only be partially reflected in the labels. For in-

stance, the images of London and Paris bridges contain

many semantic features such as the style, building ma-

terials and general atmosphere. The images and labels

describing them may not capture all of these features,

nor their relative importance for determining similarity.

The problem of lacking semantic features can be al-

leviated by semi-supervised learning methods that rely

on manual labeling of a small set of image pairs or

triplets, rather than per-image labels for the entire set.

A large body of work has attempted to classify im-

ages using such methods, typically, by pair-wise labeling

consisting of equivalence (and sometimes inequivalence)

constraints, i.e., whether or not the pair belongs to the

same class [1,2,19,21]. Triple-wise constraints are more

relevant to relative comparisons of images, as they com-

pare the distances of two image pairs [6,9,11,13,16].

The constraints can then be used to learn a distance

metric between images. In particular, the work of [16]

focuses on adaptively selecting optimal triplets based

on crowd input. In the recent work of [9,11,13], triple-

wise comparisons have been collected from crowd mem-

bers in order to learn about style similarities. While

these studies highlight the need in collecting similarity

comparisons from the crowd, the use of triplet compar-

isons has shortcomings that our work addresses: this

approach requires many crowd tasks, and users are not

given context for comparison. These shortcomings were

also noted by [20], a study that focuses on redesigning

the user interface to derive more image comparisons

from each crowd task. This is done by asking users to

select the X most similar images to a given image, out

of Y images. The new interfaces of [20] is a step forward

from triplets, but in contrast with our work, their study

does not consider how to effectively choose images to

compare.

Another work highly related to ours is Crowdclus-

tering [7], which considers clustering images with the

crowd. Each crowd member obtains a sample of a few

images (a query) and classifies them into groups. This

input is used to train a Bayesian model which estimates

the ways different crowd members may classify each im-

age. This work resembles ours in letting the user cluster

a small set of images, and also in the idea of refining

the clustering results by re-applying the technique on

the obtained clusters. However, their technique is not

designed to compute image similarities. In contrast, we

employ the progressive refinement to determine image

similarities with faster convergence. We compare the

performance of our techniques with [7] in Section 4.

The work of [22] suggests to only obtain query an-

swers for a small fraction of the data, and use dedicated

matrix completion techniques to complete the missing

classifications, rather than requiring that every image

appears in at least one query as in [7]. This work is or-

thogonal to ours, and can be employed in our case if the

number of queries that can be asked is small relative to

the number of images.

Crowdsourcing has been employed for tasks related

to ours such as record matching based on images [10],

grouping and top-k [5], and entity matching [18]. How-

ever, no previous work has considered the problem of

learning an image similarity metric, nor can be applied

in a straightforward manner for this task. For example,

k-NN may be viewed as finding the top-k most similar

images for each image; however, applying the method

of [5] for each image separately is inefficient.

3 Algorithm

We next describe our method of generating queries to

the crowd based on an estimated similarity metric, and

of refining the similarity metric based on answers from

the crowd. We aim to use queries that involve images

from the same local neighborhood, which are more ef-

fective for determining the global similarity metric.

Our algorithm generates clustering queries by se-

lecting sets of nq images. The answer obtained from

crowd members is a division of this image set into nc
clusters. The crowd is a relatively expensive resource

in terms of latency, human effort, and often monetary

cost as well. Therefore, in many practical cases, the to-

tal number of queries that can be asked is restricted

by a predefined budget. Given such a budget, the goal

of the algorithm we develop is to utilize the queries in

the best way possible, by considering only local neigh-

borhoods. This yields an iterative process, where local

neighborhoods change according to queries results.
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(a)

(b)

Fig. 4: An example of the clustering interface. (a) The

user is presented with 20 images to cluster into the four

bins on the right. (b) The bins may contain as many

images as necessary. When all images are clustered, the

user can submit the query and receive another one.

Our method estimates local distances by maintain-

ing an embedding of the entire set in Euclidian space,

in which the distances are calculated. The embedding is

initialized randomly, and local neighborhoods are pro-

gressively improved. The embedding ensures that even

distances that were not queried are consistent with the

partial information derived from queried distances. To

improve the embedding of local neighborhoods, we pose

queries to the users in small batches, and update the

embedding after each batch. Interestingly, querying lo-

cal neighborhoods of the embedding proved beneficial

even in early stages when the images are not necessar-

ily semantically close, since such queries provide many

constraints on the same neighborhood. In addition, in

each iteration we wish to preserve the close neighbors

which are already semantically similar. Even in a ran-

dom embedding, local neighborhood based queries help

to detect and preserve cases where some neighbors are

also semantically similar.

The main steps of the algorithm are illustrated in

Algorithm 1: As input, the algorithm takes the total

number of allowed queries (budget) and the number of

queries to generate at each iteration (batch size). The

results of the queries are integrated into the embedding

(E) and the induced global distance metric (D). The

output of the algorithm is the distance metric computed

based on the last, most refined embedding.

Algorithm 1: CrowdSter(budget, batch size)

1: E = EmbedData() // random embedding

2: num of queries = 0

3: while num of queries < budget do

4: Q = SelectQueries(E, batch size)

5: R = RunQueries(Q) // using the crowd

6: D = DistanceFromEmbedding(E)

7: D = UpdateDistances(D, R)

8: E = EmbedData(D)

9: num of queries += batch size

10: end while

11: D = DistanceFromEmbedding(E)

12: Output D

Clustering query. For a set of images I, we define a

query Q as a subset of I containing nq images. The

answer to each query is a division of Q into disjoint

clusters C1, . . . , Cnc
⊆ Q. From these answers we ex-

tract similarity comparisons: given two images x, y in

cluster Ci, and a third image z in a different cluster Cj ,

we infer that ∆(x, y) < ∆(x, z), where ∆ represents the

similarity metric. As nq increases, we obtain more com-

parisons, but the number of images in a query should

be small enough to allow a crowd member to view

them [10]. In our experiments, we found that nq = 20

is a good balance of this tradeoff between effectiveness

and simplicity. Following this, we found that setting the

number of clusters nc to 4 is optimal, as it balances be-

tween inferring more comparisons (smaller nc values)

and quickly pruning less similar images (larger nc val-

ues).

Generating queries. Queries are generated in our algo-

rithm based on the embedding from previous phases.

In each phase, we generate queries that (a) are local,

and (b) cover the set of images as evenly as possible. To

do so, we sample random images uniformly while mak-

ing sure they are not nearest neighbors of each other.

When no such samples remain we start over. For each

sampled image, we find its k nearest neighbors in the

embedding. Then, out of these neighbors we sample a

random subset of size nq and use it as the next query.

Embedding. We maintain an embedding of all images

in the dataset, which is gradually improved with each

batch of queries. The embedding infers a consistent dis-

tance between every pair of images, to be used in the

next phase. Before the first queries are sent to the users,

the images are embedded into a Euclidian space using

a uniform random distribution. To gradually improve

the embedding, we calculate the distance between each

pair of images in the embedding, update the distances

according to the query results, and embed the images

again using the updated distances. This consolidates

the updated distance and resolves any inconsistencies
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among them. To compute the embedding we use multi-

dimensional scaling (MDS), whose input is the distance

between each pair of images.

More specifically, we want to find an embedding by

taking into account only distances that we have infor-

mation of (via query results), ignoring all other dis-

tances. For this we use Sammon Projection [14], which

is a multidimensional scaling technique that computes

an embedding using a stress function and gradient de-

scent. The weighted stress function can take into ac-

count the relevant distances and ignore other distances

by giving them a very small weight. All weights are ini-

tialized to a very small value ε. In each phase, we set the

weight for each updated distance to 1. Distances that

were updated in previous phases maintain a weight of

value 1, so once a pair of images is queried its distance

is always taken into account when computing the em-

bedding in subsequent phases.

Updating the distance. To update the distance, all the

query results in the batch are aggregated and analyzed.

For each pair of images in each query, we refer to a query

result as positive if the images were assigned to the same

cluster, and negative if the images were assigned to dif-

ferent clusters. The distance between a pair of images

is shortened if the pair has more positive than nega-

tive query results, and made longer if the pair has more

negative query results. The distances between pairs of

images for which there was a tie and pairs of images

that did not appear in the same query are not affected.

Distances are shortened by dividing by β and are

made longer by multiplying by β. In our experiments β

is set to 4. Note that we do not take into account the

number of times a pair of images appeared in the same
batch of queries. For example, a pair of images that has

two out of two positive query results is updated in the

same manner as a pair of images that has three out of

four positive query results. Since the phases tend to be

short, the probability that the same pair of images will

appear in many queries is small, and inferring from the

exact ratio between positive and negative results is too

sensitive to randomness.

4 Experiments

To evaluate the efficiency of our approach, we conduct

three sets of experiments, described below. First, to ver-

ify the correctness of our approach, we conduct a set of

small-scale experiments for a data set where the ground

truth is known. This ground truth allows evaluation of

the result quality. Second, we test the practicality of

the approach for semantically-rich image similarities,

using larger sets of images, where the ground truth is

unknown. Finally, to further investigate each compo-

nent of our solution, we conduct synthetic experiments

where the ground truth similarity is known, and crowd

answers to queries are simulated accordingly instead of

using real crowd. We vary different parameters of our

system, and observe the effect on the output quality. In

all sets of experiments, we further compare the results

we obtained to alternative, baseline algorithms.

– Random: Randomly select queries, equivalent to

executing our algorithm in a single phase.

– Crowdcluster: Using the method of [7]. The re-

sults of this method are targeted to identify clus-

ters, but also include a mean spatial location for

every image, which we use as an alternative to our

embedding.

– Feature-based: Estimate the similarity of images

based on automatically extracted image features,

which serves as a baseline where ground truth is

not available.

Implementation and Crowd UI Our crowdsourcing sys-

tem includes a dedicated, user-friendly crowd interface.

The UI of the system is implemented on the Google App

Engine platform. The back-end analysis of the crowd

answers and the computation of the next queries to be

posed to the crowd is performed in MATLAB R2014b.

A screenshot of the UI is shown in Figure 4. Initially,

we display 20 images on the left-hand side of the screen

(the query), and the crowd member is asked to drag and

drop the images in one of the 4 right-hand side bins (and

also move images between bins). Crowd members can

also decide to leave images outside of any bin if they

are unrelated to any of the other images, in which case

our algorithm only infers that the leftover images are

less similar to the images within the bins. This UI was

used in the experiments described below.

4.1 Crowd Experiments with Ground Truth

As a sanity check, we executed two small scale exper-

iments, with a small crowd (about 10-15 crowd mem-

bers) and small sets of images, where the ground truth

is known. We experimented with two different compu-

tation tasks: top-k and clustering. For each task, the

crowd members answered queries of both the baseline

algorithm and our algorithm.

Top-k similar colors. The simplest set of images that

we have used is a set of 300 solid colors, whose ground

truth similarity can be measured, e.g., by embedding

the colors into 3-dimensional space according to their

RGB or HSL values (we have used RGB). The goal was

to compute, for each color, the k-NN most similar colors

for varying values of k. We have compared the results

of our algorithm to the results of the baseline random
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Fig. 5: The number of correct 10-NN images based on

real crowd input, comparing the results of our algorithm

with the two baseline alternatives.

and crowdcluster algorithms, using the same number of

queries overall in the three algorithms.

The results indicate that our algorithm identifies a

larger percentage of the nearest neighbors for a larger

percent of the images. Figure 5 illustrates the 10-NN re-

sults for the three algorithms using 235 queries overall.

Five phases were used in our algorithm. For each al-

gorithm, we show a histogram of intersection between

the true 10-NN (according to the ground truth) and

the computed 10-NN. Note that crowdcluster slightly

outperforms the random baseline, but our algorithm

generally identifies a larger fraction of the true 10-NN

images, “pushing” the histogram rightwards (red bars).

Overall, our algorithm identifies 43.4%-50% more of the

true nearest neighbors than the baseline alternatives,

which demonstrates the effectiveness of our progressive

refinement approach.

Clustering fonts. In this experiment we have tested the

ability of our algorithm to cluster letter images into

fonts, where the ground truth is the font to which the

letters belong. We have used 180 letters of 12 differ-

ent fonts, and asked crowd members to evaluate the

similarity of letters with respect to their appearance.

The results have been used to compute 12 letter clus-

ters, which should ideally match exactly the 12 original

fonts. Our algorithm has used 123 queries in total over

5 refinement phases. For comparison, we have executed

the same task with 123 random queries.

Figure 6 illustrates the experimental results and in

particular the progressive refinement, via heatmaps that

represent the cluster quality after each of the 5 phases.

The results of the algorithm are almost perfect, with

only 1.1% errors (two letters). In comparison, the ran-

dom query selection resulted in around 60% errors, and

was outperformed by our algorithm already after the

second phase. Figure 7 displays an example cluster pro-

duced by our algorithm, and the corresponding cluster

produced by the random baseline. The latter cluster

makes sense in the broader context of the fonts, since

(a) (b) (c)

(d) (e) (f)

Fig. 6: Heatmaps displaying the accuracy of clustering

for the font dataset. Figures (a)-(e) illustrate the cluster

quality after phases 1-5 of our algorithm, respectively,

and 123 queries in total. For comparison, Figure (f)

displays the cluster quality after 123 random queries.

(a) (b)

Fig. 7: Two examples for clusters produced for the same

letter “a” (on the top left), based on the similarity met-

ric of (a) our algorithm, and (b) random baseline.

it contains only handwriting fonts; but the progressive

refinement in our method allows distinguishing also be-

tween the different handwriting fonts.

4.2 Crowd Experiments with Real-world datasets

Next, we have executed experiments with two real-world

datasets where the image similarity is highly seman-

tic and therefore image features may not be sufficient

for estimating this similarity. The first dataset consists

of 910 images of movie posters downloaded from the

movie pages in Wikipedia, where similarity is usually

based on genre, style of the poster, characters, and so

on. For this set we have collected 547 query answers

from about 60 crowd members.

The second dataset consists of 1024 chairs, of dif-

ferent types and angles from the ShapeNet dataset [3].

Similarity in this dataset is based, among others, on se-

mantic features such as the usage of the chairs, the ma-

terial they are likely to be made of, and their assessed

level of comfort. For this set we have collected 559 query

answers from about 60 crowd members.

As in many real-life scenarios, for these sets there is

no ground truth or gold-standard. Hence, we have man-

ually examined the results of our algorithm by sampling

images with with their k-NN images, and comparing

these results with the results obtained by automatic

means based on image features. For the movie dataset,

we used a color histogram with 64 bins (four bins for

each of the RGB channels), and an image thumbnail of
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(a) (b)

Fig. 8: Nearest neighbors of the center image in a collection of chairs, computed using (a) HoG descriptor, and

(b) crowdsourced queries. Smaller images mark farther neighbors. Less similar chairs are highlighted.

Dataset Number of images Success % ∆

Movie posters 910 87.2% 2.5
Chairs 1024 76.2% 3

Table 1: Real-world dataset results

four by four pixels, or a total of 16 RGB values. The two

descriptors were concatenated and treated as a single

vector for the distance calculation. For the chair dataset

we have used features derived from HoG descriptor [4].

For the manual examination, we used 50 random

“seed” images sampled from each of the datasets. For

each seed image, we took its 10 NN images from the

dataset according to both our algorithm and the feature-

based baseline. Each of the images was labeled “very

similar”, “similar”, or “unrelated” with respect to its

seed image. We counted the percent of seed images for

which our algorithm finds a greater number of similar

images than the baseline, breaking ties by the number

of “very similar” images. The results are displayed in

the Success % column of Table 1. To quantify by how

much we outperform the baseline, we also computed

the average difference between the number of similar

images our algorithm has discovered and the baseline.

This difference is marked by the ∆ column in the table.

We illustrate a specific example of the observed dif-

ference in Figure 1. The figure displays the 10-NN im-

ages (a) computed by our algorithm based on clustering

queries and (b) according to color descriptors. The seed

image is displayed in the middle. In this case, the results

of our semantic similarity estimation retrieve movies

of the same genre (animated adventure films). Within

that genre, most of the closest neighbors (four out of

the top five) have the same visual appearance (blue

background) as the seed image. On the other hand,

the movies retrieved by using image descriptors have

a similar visual appearance in terms of color scheme

and mood but are very different semantically. Note that

while we use rather simple image descriptors, even ex-

tremely sophisticated descriptors would fail to associate

posters of movies in the genre which has different visual

appearance with the seed image.

Figure 8 displays similar results for the chair dataset,

but where the baseline k-NN results (a) are computed

according to HoG descriptor. The seed chair is a school

chair with curvy tubes supporting the back. The 10-

NN chairs given by our algorithm are all school chairs

and many of them contain similar style elements such

as curvy tubes. In contrast, the chairs computed using

the HoG descriptor seem superficially similar (and also

have the same orientation) yet include office and din-

ning room chairs, and vary more in their style (the less

similar chairs are highlighted in the figure).

Figure 11 displays a few more selections of k-NN

results for movie posters and chairs. In each set the top

left image is the seed and its 7 nearest neighbors are pre-

sented from left to right. In many cases, the similarity

between images can be both semantic and visual. We

have deliberately selected cases which present a purely

semantic relation which may be very hard or impossible

to capture using image descriptors. The semantic con-

nection between movie posters vary greatly, and spans

movies from the same genre (a), posters that have dom-

inant typographic elements (b), posters of old movies

(c), or the same expression of the faces in the poster (d).

The semantic connection between chairs may be simi-

lar style elements (e), similar overall shape (f), similar

function (g) or even chairs with wheels (h). The k-NN

results for all movie posters and chairs in the dataset

can be seen in the supplemental material.

4.3 Synthetic Experiments

We next provide further analysis of our algorithm via

synthetic experimental results. The experiments were

conducted on datasets with available ground truth, and

with answers from a simulated crowd. The simulated

answer for a given query was computed using a k-means
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(a) (b)

Fig. 9: Visualization of the images that appeared in the

same query as the image marked in gold. The images

are ranked by the number of mutual queries and the

top 10% images are colored red. (a) Mutual queries af-

ter 400 random queries. (b) Mutual queries after 400

queries using our algorithm.

algorithm, which has split the 20 images in the query

into 4 clusters. Using synthetic answers allows us to

test the performance of our algorithm in a variety of

scenarios.

Effect of locality. In the Introduction, we have stressed

the importance of using queries about local neighbor-

hoods of images. To test this claim in isolation, we have

conducted a dedicated synthetic experiment, as follows.

We have used a set of 1000 colors sampled uniformly.

Since the true similarities are known for this image set,

we could vary the locality of queries: for each query

we started from a seed image, then sampled the rest

of the images from within a certain distance from the

seed image. We have then used the results of the queries

to compute the embedding as usual. We have observed

an almost linear decrease in the average precision of

the computed 10-NN images as the distance between

images in each sample increases.

Co-occurrence of similar images. One of the indications

for the effectiveness of the progressive refinement in our

algorithm is the frequent co-occurrence of similar im-

ages in the same query. Ideally, as the similarity met-

ric that we compute converges to the true one, similar

images are more likely to appear in a query together.

Moreover, the distance between pairs that appeared to-

gether in many queries is expected to be more accurate,

since more data is available. Since the budget of queries

is limited, each pair that is queried comes at a cost of

another pair for which there will be less available infor-

mation. We show that our algorithm effectively favors

pairs which are close to each other and therefore need

more accurate information.

Figure 9 illustrates this. We simulate a two dimen-

sional embedding of images, where each point repre-

sents an image in the dataset. The distance between

each pair of points (or images) is taken from the em-

bedding, which simulates ground truth similarity. The

dataset contains 400 images, and we ran 400 simulated

queries, once using our algorithm and once with random

queries. We then select an arbitrary image (marked in

gold) and count how many times each image in the

dataset has co-occurred with it. We rank the images

according to their mutual queries count. The top 20

images (5% of the dataset) that were queried together

the most with the golden image are colored bright red.

The next 20 images (5%) are colored dark red. The rest

of the images (360 or 90%) are colored light blue.

Figure 9(a) shows that using random query selec-

tion, the images that co-occurred the most with the

golden image are randomly scattered, as expected. In

contrast, using our algorithm to select the queries (Fig-

ure 9(b)), the frequently co-occurring images are cen-

tered around the golden image. Evidently, we do not

spend queries on pairs which are known to be far away,

since their distance from each other matters less and is

expected to be less accurate. This allows our algorithm

to better estimate the relative local similarities, and use

them to estimate the global similarities.

Varying the algorithm parameters. We next execute our

algorithm while varying the value of two parameters:

the total number of queries and the number of phases,

to demonstrate the impact of these parameters on the

query results. Figure 10(right) illustrates the effect of

varying the total number of queries, for a synthetic 1000

random color dataset, and 5 phases of our algorithm.

As expected, there is a positive correlation between the

number of queries we use and the quality of the re-

sults, measured by the size of the intersection between

the true 10-NN images and the 10-NN images that we

compute. This means that with a greater budget we can

improve the estimation of the similarity metric.

Figure 10(center) illustrates the impact of number

of phases on the quality of the results (using the same

image set as above, the same quality metric, and 1200

queries overall). The number of phases ranges from 0

(which is equivalent to random query selection) to 5.

Note that increasing the number of phases increases the

result quality, since recomputing the embedding more

frequently allows creating better queries. However, the

margin by which the quality improves decreases, so the

difference between 4 and 5 phases is small.

Queries versus triplets. A common solution for collect-

ing image comparisons from the crowd is based on triplet

queries of the form “Is image A more similar to image

B or to image C?”. We have already noted that one

advantage of our approach over the triplet-based one

is that clustering queries provide context for compar-

ison. In this synthetic experiment we ignore the con-
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Fig. 10: Number of correct 10-NN images as a function of number of queries (left) and number of phases (center),

and versus a triplet-based algorithm (right).

text, and focus on the number of questions needed for

each type of solution. As shown in Figure 10(right), our

algorithm’s performance using 1200 queries is compa-

rable to the triplet-based algorithm’s performance us-

ing 84000 queries.

5 Conclusion

In this paper, we have presented an efficient approach

for estimating the similarity of images, based solely on

the input of the crowd. Our system progressively re-

fines the images posed to the crowd, in order to ob-

tain similarity comparisons between images in the same

neighborhood, allowing faster convergence to an accu-

rate similarity metric. In our experimental study we

have used a particularly small number of queries, and

have shown that even on this basis we can obtain a fair

estimate of the semantic similarity.

Limitations and future work. This work focuses on in-

put from the crowd alone. However, it is often the case

that some clues for the semantic similarity of images

are available in the form of image features or textual

context. Even if these clues do not account for the full

range of semantic connections, it would be interesting

to examine how to leverage them in conjunction with

our algorithm. This direction may benefit the method’s

scalability, since in very large image sets, the affordable

number of queries might not even be linear in the size

of the set. A straightforward approach for integrating

semantic clues would use our algorithm to learn simi-

larities for a small fragment of the image set, and then

apply machine learning techniques to complete the rest,

using features based on semantic clues (in the spirit of

Lun et al. [9], Saleh et al. [13], and Yi et al. [22]). A

more interesting solution may further combine the clues

within the query generation phases. This is non-trivial,

since the usage of other estimates can potentially cause

semantically similar images to be overlooked.

Another challenging direction for future work in-

cludes a more elaborate treatment of the uncertainty

stemming from the crowd. Crowd members often dis-

agree on the similarity of images, or even provide some

inconsistent answers. So far, we have assumed that the

embedding we perform mitigates the impact of such

inconsistencies. However, we may want to explicitly ac-

count for inconsistencies, by a probabilistic modeling

of the crowd’s behavior, e.g., as done in [7] for the pur-

pose of clustering. It would thus be interesting to de-

velop probabilistic models dedicated for the learning of

a similarity metric. In particular, this method should

support efficient computations, due to the interactive

nature of our algorithm.
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