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Abstract

In this work we investigate the concept of semantic similarity between
shapes and images. Similarities between elements can be used for numerous
applications, such as clustering, categorization, visualization, retrieval, and
browsing. For shape and image browsing, we present a novel exploration method
which relies on the similarities between elements to produce a seemingly endless
grid, which can be navigated in any direction like a regular map. This provides a
smooth and intuitive browsing experience. Our method is efficient and highly
scalable, and can be used for datasets that contain millions of elements.

For all of these applications, the quality of the solution depends strongly
on the quality of the similarity measure. Similarities between elements must
reflect the perceived similarity by humans, or the semantic similarity. This
motivates further research to improve existing similarity measures, which often
lack semantic context. First, we show how crowd sourced data can be used
to deduce complex semantic similarities between shapes or images which are
not possible to compute automatically without external knowledge and context.
Such methods can be used to complement automatic methods and provide
additional external context.

Next, we focus on the shapes domain. Shape segmentation, correspondence
between shapes and semantic similarity are some of the pillars of shape analysis,
and each of these problems enjoys extensive research of its own. However, these
problems are linked together, and the output of one can be the input of another.
Similarity of parts can be used to discover shape segmentation, segmentation
can be used to compute shape correspondence, and correspondence can be used
to compute semantic similarity between shapes. We present a similarity measure
between shapes which is computed by segmenting and finding a correspondence
between the segments. This similarity measure captures semantic relations such
as shapes that belong to the same style, or have a similar function.

We further investigate the link between correspondence and segmentation
of shapes, showing how segmentation of the shape can improve point-to-point
correspondence. When matching shapes which contain symmetries, there are
multiple contradicting solutions to the correspondence problem, which often
cause instability of the final solution. To alleviate this problem we propose a
symmetry aware correspondence, in which each segment can match several
segments in the other shape. This enables us to find a matching between



symmetric segments in a very efficient manner. The symmetric matching
between segments is less detailed but more accurate than non-symmetric
methods, and it can be used to improve point-to-point correspondence even
without providing a one-to-one mapping between the segments. Furthermore,
resolving the symmetry can potentially be done as a post-process which is
decoupled from the matching and thus less complicated.
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1 Introduction

3D object repositories have gone from being small and scarce to large and
abundant. Image repositories have seen similar growth but in a different scale;
they have gone from being large to massive, and from abundant to omnipresent.
The abundance of large collections increases the demand for efficient, reliable
and intuitive ways to organize and explore shapes and images.

The main focus of this dissertation is the study of semantic similarity within
large collections of shapes or images. We are interested in measuring semantic
similarities between objects, as well as the applications of such a similarity
measure. Detecting similarities between shapes or images is a core component
of a broad range of tasks, such as retrieval, exploration, categorization, and
classification. For shape and image exploration, we propose Dynamic Maps, a
similarity based browsing method which enables intuitive navigation through
large collections without relying on keyword search or filtering. This application,
as well as the many tasks mentioned above, can greatly benefit from a similarity
measure which reflects semantic information regarding the shape or image:
the function of an object, its origin, its location, and more. However, many of
the state-of-the-art similarity measures are feature driven, and do not reflect
semantic information well.

Motivated by the necessity of similarity measures that incorporate semantic
information, we present two methods to measure semantic similarities. The first
relies on crowdsourced data, and suggests a querying scheme which gains a lot
of relevant information from each query, thus reducing the necessary number of
crowd queries. Using crowd queries enables us to capture semantic information
that might exist outside of the image or 3D object, such as identifying paintings
by the same painter or objects that belong in the same setting. The second
method measures semantic similarity between shapes by comparing the parts
that each shape is composed of. Using the correspondence between parts, we



can estimate which transformations are necessary to transform one shape into
the other. We define the shape edit distance as the sum of these transformations.
The shape edit distance is sensitive to the function of a shape and its origin.

The derivation of the shape edit distance demonstrates the relation between
segmentation, correspondence, and similarity of 3D shapes. These three
problems are some of the pillars of shape analysis, and each of them enjoys
extensive research of its own. However, these problems are linked together, and
the output of one can be the input of another. Similarity of parts can be used
to discover shape segmentation, segmentation can be used to compute shape
correspondence, and correspondence can be used to compute semantic simi-
larity between shapes. We further investigate the link between correspondence
and segmentation of shapes, and show how the segmentation of shapes can
help the computation of a point-to-point correspondence between them. We
introduce symmetry aware correspondence, in which each segment can match
several segments in the other shape. We present an efficient and stable method
of computing such correspondences, which alleviates the inherent instability
of the optimization when symmetric shapes are being matched. We show that
the symmetric matching of segments can be used to improve point-to-point
correspondence even without providing a one-to-one mapping between the
segments.

Finding correspondences between shape parts involves solving a graph
matching problem. Graph matching is a heavily researched area, however most
existing work focuses on one-to-one or one-to-many matching. In the methods
above, we require a more complex structure of correspondence. Therefore,
these works include notable contributions for the graph matching problem.
We introduce two adaptations of spectral correspondence, a prevalent graph
matching method. These adaptations are detailed in Sections 4.3 and 5.3.

In the rest of this chapter, we elaborate the discussion of semantic similarity
and its applications, and of the contributions mentioned above.

1.1 What is Semantic Similarity?

We say that two images or shapes are semantically similar when the similarity
between them is based on high-level concepts rather than low-level represen-
tations or features. Below we give examples of similarity measures with low
semantic level and high semantic level. We categorize similarity measures to



three groups: non-semantic, basic semantic and highly semantic. However, this
is not a mathematical concept which can be defined in exact terms, and other
categorizations are possible. We claim that highly semantic similarity measures
are more accurate in practice and more useful than similarity measures with low
semantic level, as demonstrated in the following chapters of this dissertation.

Non-semantic similarity. = Non-semantic similarity measures depend heavily
on the low-level representation of the object. The similarity between images
is measured by directly comparing their corresponding pixel values, and the
similarity between shapes is measured by directly comparing their vertex
positions. Thus, such measures can only capture similarities between images
or shapes which are almost identical. In Figure 1.1 we show similar images for
which the values of each pixel are quite different. Such images would not be
considered similar by a non-semantic similarity measure.

Figure 1.1: Similar images with low pixel-level similarity

Basic semantic similarity.  The basic semantic information in an image or
3D shape are what type of objects they depict: a flower, a bee, a human face,
a mountain or a sunset on the beach. For images, image descriptors provide
a higher level representation of the image, and can sometimes capture such
semantic meaning. Simple descriptors can identify similarities in composition
and color palette, while advanced descriptors can also estimate the context of
a scene, or the type of content in the image. In Figure 1.2 we show images that
have semantic similarities that can typically be captured by image descriptors.

3D shapes are less prevalent and less studied than images. Still, state-of-the-
art techniques are mostly capable of identifying basic semantic information such
as overall shape (comparable to the composition of an image) and the category
the object belongs to.



Figure 1.2: Images with basic semantic similarity

Specialized methods can also recognize semantic similarities in specific
contexts. For example, identifying the similarity of different photos of the same
person, photos of the same city, or the same 3D model in different poses.

Highly semantic similarity. Highly semantic similarity is derived from a
broad semantic context, which may include elusive relations such as a similar
emotion or sensation evoked by images (e.g., images that convey “fear” or
“comfort”); shapes which are semantically related (e.g., different types of musical
instruments); likeness between the photographed people; paintings by the same
artist; or shapes that are modifications of the same base shape. These relations
are quite often external to the image or shape itself; they come from common
knowledge or experience, and thus cannot be deduced directly from computed
features. In Figure 1.3, we show images that have external high level semantic
relation to each other, as they were painted by the same artist.

Note that semantic similarity also depends on the context of the image, and
on personal taste. Within a given context, for example in Figure 1.3, some people
may decide that images (a) and (b) are more similar, while others may decide
that images (b) and (c) are more similar. These decisions may change within a
different context, such as the one given in Figure 1.4.

1.2 Applications of Semantic Similarity

In this section, we briefly describe some common applications of similarity
between shapes or images, which motivate our search of highly semantic
similarity measures.
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Figure 1.3: Images with high level semantic similarity

Figure 1.4: Images within context

1.2.1 Image and shape retrieval

The most prominent applications of similarity are image retrieval and shape
retrieval. The input of this task is a single image (shape), and a large collection
of images (shapes). The goal is to retrieve the items in the collection which are
most similar to the input. In Figure 1.5 we show examples of image and shape
retrieval. The simplest way to perform retrieval is using a k& nearest neighbors
approach, and output the & elements in the collection which have the highest
similarity to the input, according to the similarity measure. A non-semantic
similarity measure can retrieve elements with low-level similarity to the input,
if such elements exist in the collection. However, most often such elements do
not exist. A semantic similarity measure can retrieve elements with high-level
semantic similarity to the input as well, leading to more relevant query result,
especially when £ is large.



Figure 1.5: Image retrieval using image descriptors. Each query image
(marked in red) is displayed with its 9 closest matches, from left to right
and top to bottom. The images are taken from a dataset of one million
images.

1.2.2 Relevance feedback

Since in many cases the distinction between a relevant and irrelevant result is
user subjective, relevance feedback techniques were incorporated into many
retrieval systems, allowing the user to guide the search according to personal
preference and taste [Rui et al., 1998; Leifman et al., 2005; Cao et al., 2006; Akgiil
et al., 2010; Suditu and Fleuret, 2011]. Relevance feedback involves presenting
the user with a set of suggested items. The user marks the preferred or relevant
items, and presented with items which are similar to the selected ones. The
process may then be repeated several times until the user is satisfied, often
employing machine learning techniques in order to aggregate and refine previous
selections. Still, the basis for learning is the core similarity measure between
items in the collection, and a semantic similarity measure is more desired than a
non-semantic one.



1.2.3 Embedding

Another important application that benefits from a reliable distance measure

is mapping a set of shapes or images onto a low dimensional manifold. This

mapping can be used for visualization or as the basis of many machine learning
algorithms which involve dimensionality reduction. One of the most prevalent

methods for dimensionality reduction is multidimensional scaling, or MDS [Sam-
mon, 1969; Kruskal and Wish, 1978]. MDS takes as input the distances between
elements and seeks an embedding in which the difference between the input

distances and actual distances are preserved. The only input for the process are
the distances between elements. Thus, for a useful embedding it is crucial to

have an accurate similarity measure. An example of MDS embedding of a set of

shapes is given in Figure 1.6.

Figure 1.6: MDS embedding obtained from SHED for a set of vases. Note how

similar shapes are grouped together.



1.2.4 Clustering

Clustering is a useful way to organize data, either for visualization or for further
processing which relies on the common properties of the elements in each
category. Most clustering methods rely on some similarity measure between
elements in the collection. A well known method is k-means clustering, in which
every element is classified to the closest of k centers, or the center with the highest
similarity to the element. To measure this distance, a reliable similarity measure
is required. Other advanced methods (for example, spectral clustering [Shi
and Malik, 2000] or diffusion maps [Coifman and Lafon, 2006]) perform some
manipulation or scaling of the original similarity space, but still can only be
effective if the similarity measure is adequate. Figure 1.7 shows an example of
clustering based on semantic similarity.

Figure 1.7: Clustering of a set of lamps according to SHED.

1.2.5 Categorization trees

By using hierarchical clustering, we can create categorization trees for a set
of shapes or images. The resulting trees hierarchically organize the elements
of the set and can be used for shape or image exploration. The trees can
be generated automatically by using a non-parametric clustering method, in
which the number of clusters in each set is selected automatically, such as Self-



Tuning Spectral Clustering [Zelnik-Manor and Perona, 2004]. An example of a
categorization tree of shapes is presented in Figure 1.8.
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Figure 1.8: Categorization tree of a set of vases according to SHED distances.

1.3 Similarity Based Browsing with Dynamic Maps

For image and shape exploration, we introduce an intuitive browsing method
which relies on the similarities between elements. Thumbnails are laid out
on a grid which can be navigated like a geographic map, using pan and zoom
operations. The grid is continuous and dynamic, with each patch generating at
the moment it is needed. Images and shapes are high dimensional objects
and the similarities between them cannot be accurately captured in a two
dimensional space. Thus, any global mapping of images or shapes onto a
two dimensional grid is bound to have discontinuities. However, the dynamic
generation of the grid, which does not produce a global mapping, ensures every
patch is locally smooth while the map remains coherent. This provides a smooth
browsing experience for the user. An additional advantage of dynamic maps



is their ability to adjust to the direction of browsing, thus better reflecting the
user’s interest. Dynamic maps are efficient to generate and are very scalable.
Thus, they can provide an on-line experience and support on-line changes to
an underlying dataset of millions of elements. For a detailed discussion and
evaluation of dynamic maps, see Chapter 2.

The work in this chapter was published in the following two papers:

e [Kleiman et al., 2013] Dynamic maps for exploring and browsing shapes.
Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-Or. Computer
Graphics Forum (SGP), 2013.

e [Kleiman et al, 2015al DynamicMaps: Similarity-based browsing
through a massive set of images. Yanir Kleiman, Joel Lanir, Dov Danon,
Yasmin Felberbaum, and Daniel Cohen-Or. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 2015.

1.4 Semantic Similarity from Crowdsourced Clustering

In this work, we aim to compute a similarity measure which is completely
semantic, driven by the context of a shape or image, as well as external
information and even the emotion it evokes. Such context cannot be discovered
by automated tools. Instead, we propose to gather information from a crowd
using a crowdsourcing technique. Our goal is to quickly converge to an accurate
similarity measure, while minimizing the cost, which depends on the number
of necessary queries and their complexity. There are two main challenges in
developing such a crowdsourcing technique. First, how to compare images in
an efficient and useful way;, i.e. what type of queries should be asked. Second,
which images to include in each query, and how to use previous queries to better
construct future queries.

We answer these two questions and present a method based on clustering
queries. Users are given the task to cluster n images into k£ bins. We then use
the clustering results to gradually improve the similarity measure by embedding
the objects in a low-dimensional space. This embedding resolves conflicts in
the query results and consolidates all of the provided information into a single
coherent space. Then, new queries are created based on the embedding and the
process is repeated. The resulting similarity measure can complement descriptor
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based methods, for example to compute semantic similarities for a fraction of
the dataset and propagate them to visually similar images. The method and its
evaluation are discussed in details in Chapter 3.

The work in this chapter was published in the following paper:

e [Kleiman et al., 2016] Toward semantic image similarity from crowd-
sourced clustering. Yanir Kleiman, George Goldberg, Yael Amsterdamer,
and Daniel Cohen-Or. The Visual Computer, 2016.

1.5 Semantic Shape Similarity Using Shape Edit Distance

In the shapes domain, current similarity measures mainly focus on distinguishing
shapes from different classes, and give little attention to intra-class similarity.
State of the art techniques are based on the appearance of the shape as a whole
and capture low level similarities between shapes. These methods do not capture
well similarities between articulated shapes, partial shapes, or shapes with
changes of scaling of the parts; they lack the necessary semantic level to identify
shapes of similar function or style.

We develop shape edit distance, a similarity measure which captures the fine
details of the shapes, as well as the overall structure of the shapes. We aim to
measure the amount of effort necessary to transform one shape into the other.
To this end, we segment each shape into approximately convex parts [van Kaick
et al., 2014], and find a matching between the shape parts. Using the matching
we estimate the magnitude of transformation each part went through. Thus, our
method is capable of identifying shapes of similar function or style. The shape
edit distance provides an intuitive similarity measure which is relatively close
to human perception of similarity between objects. It is useful for identifying
similar objects within the same class, as well as distinguishing between different
classes of shapes.

A core part of our approach is computing correspondences between shape
parts. Correspondence between graphs or feature points has been heavily
researched in recent years, but mostly in the context of one-to-one correspon-
dences [Leordeanu and Hebert, 2005; Berg et al., 2005; Kezurer et al., 2015] or
one-to-many correspondences [Cour et al., 2006; Leordeanu et al., 2009]. These
methods are less effective when a different correspondence structure is required.
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For shape edit distance, we require a bidirectional one-to-many matching: a part
in one shape can match many parts in the other shape and vice versa, but many-
to-many relations are not allowed. Within these relatively flexible constraints,
there are often competing solutions with high likelihood. In such cases some
likely matches might belong to one solution and other likely matches belong to
another. Therefore, we introduce an adaptive spectral correspondence technique,
based on the popular spectral relaxation model [Leordeanu and Hebert, 2005].
Our technique iteratively improves the optimization based on previous selection
of matches. The adaptive technique gives precedence to matches that belong to
the same solution, which are more compatible with one another. The shape edit
distance and its evaluation are discussed in details in Chapter 4. The details of
adaptive spectral correspondence are discussed in Section 4.3.

The work in this chapter was published in the following paper:

e [Kleiman et al., 2015b] Shed: shape edit distance for fine-grained shape
similarity. Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung, and
Daniel Cohen-Or. ACM Transactions on Graphics (SIGGRAPH Asia), 2015.

Approximately convex segmentation, a collaboration with the author which is
used for shape edit distance but not detailed in this dissertation, was published
in the following paper:

e [van Kaick et al., 2014] Shape segmentation by approximate convexity
analysis. Oliver van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and
Daniel Cohen-Or. ACM Transactions on Graphics (TOG), 2014.

1.6 Symmetry Aware Correspondence Using Shape Graphs

In this work, we follow a similar idea of segmenting shapes and finding a
correspondence between shape parts, and use it to improve point-to-point
correspondences and symmetry detection. We create a shape graph from the
segmentation of a shape, where each node corresponds to a segment. This shape
graph provides information about the structure of the shape, which can be used
to stabilize the correspondence and rule out correspondences which are not
coherent with the rest of the shape. In particular, we use the shape graphs to
find a symmetry aware correspondence between the shape parts. Intuitively, the

12



symmetry aware correspondence allows segments to be matched to any number
of symmetric segments. In practice, groups of segments of various size can
correspond to groups of segments in the second shape, such that every segment
in the first group corresponds to every segment in the second group.

Matching shapes that contain intrinsic symmetry is a particularly difficult
correspondence problem, since there are multiple solutions which are equally
likely to be correct. This non-convexity makes the optimization expensive and
error prone, and often leads to inaccuracies in the final solution. Symmetry
aware correspondences relax the one-to-one constraints and effectively reduce
the search space. The new search space has a single stable solution which can be
found very quickly and efficiently.

Note that for many-to-many correspondences, a solution that matches every
part in one shape to all parts of the other shape is valid yet not desired. This is
unlike one-to-one or one-to-many correspondences which do not allow benign
solutions. This poses a problem when the optimization solution is not sparse,
since there is no clear indication of how many matches to include in the final
correspondence. Thus, we present an optimization method based on spectral
correspondence which produces sparse solutions, where only matches that
belong to the correspondence are associated with high values.

Converting a symmetry aware correspondence to a one-to-one correspon-
dence requires additional steps; however, we show that the symmetry aware
correspondence is useful even without producing a one-to-one correspondence,
for example to improve point-to-point correspondence solutions. Our method
has an additional application of symmetry detection, by matching a shape to
itself. While one-to-one correspondences provide more information, our solution
is significantly faster and provides more accurate correspondences than such
methods. Our symmetry aware correspondence method is described in details
in Chapter 5. The results of this work are pending publication.
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2 Similarity Based Browsing with
Dynamic Maps

In this chapter we present an intuitive tool for similarity based browsing, an open-
ended exploration of shapes or images which relies on the similarities among
them. Shape browsing and image browsing have different end results, however
in practice they are performed in a similar manner since 3D models are typically
viewed as a single rendered image during the browsing. Therefore, throughout
this chapter we will mostly focus our discussion on image browsing, except the
discussion of implementation details and evaluation.

2.1 Image Browsing

Commercial tools for image browsing or image search focus mostly on keyword
search. The images are presented in a grid ordered by a relevance measure
relative to the input keywords (similar tools exist for shape browsing). While
text-based directed search can be effective for finding specific types of images,
studies have shown that image search is often more exploratory in nature
than Web search, and that browsing is an essential strategy when looking
for images [André er al, 2009; Markkula and Sormunen, 2000; Chew et al.,
2010]. Still, most commercial systems lack support for exploratory search
and do not provide means for serendipity in the search process [Hearst, 2009;
Markkula and Sormunen, 2000].

To address this gap, various research systems have looked into browsing as a
complementary tool to text-based search methods [Combs and Bederson, 1999;
Pecenovi6 et al., 2000]. One useful way of browsing through images is by
using similarity. Users often look for images that are similar to a given image,
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and browsing according to similarity between images has been shown to be
useful [Rodden et al., 1999; Liu et al., 2004]. Relevance feedback (see Section 1.2.2)
is often used to refine search results using a selection of preferred images [Zhou
and Huang, 2003]. At each relevance feedback step, the user is presented
with a new set of images based upon past selections. However, the navigation
experience with this approach is not continuous and it requires the user to go
over a large collection of images and select the relevant or irrelevant ones at each
step.

A possibly more intuitive approach is to lay out the images on a continuous
navigable two-dimensional grid such that similar images are displayed closely
together. Navigating such a grid is similar to navigating a geographic map
application, thus it has an intuitive and familiar user experience. Zooming
capabilities can also be added to the navigation options to enhance the user
experience. The continuous navigation eliminates the need for explicit relevance
feedback on individual queries. Instead, the direction of navigation provides
hints to the type of results to be displayed next. The challenge, however, is the
generation of the continuous grid.

2.2 Dynamic Maps

Images and shapes are extremely high dimensional elements. Generating a
cohesive global two-dimensional manifold that preserves similarity relations
among all images or shapes is therefore challenging, if at all possible. However,
when a user interactively navigates a map-like interface, only a small portion of
the search space is displayed at a time. Our key idea is that for such navigation,
global requirements can be relaxed. Navigation is done over a pseudo-map,
where the data is dynamically organized into a local manifold, only in the region
currently observed by the user. There are several advantages to generating
a dynamic map on the fly. First, global constraints are relaxed and a locally
continuous map can be generated, in which a pair of shapes are near in the
embedding only if they are relatively close in the original high dimensional space.
Note that the opposite is not necessarily true; a pair of shapes that are similar,
i.e. close in the original high dimensional space, are not guaranteed to appear
in the same patch. Their placement in the patch depends on the direction of
browsing selected by the user. Second, the generated map can interactively
change according to the user’s interest and direction of browsing, thus providing
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Figure 2.1: Browsing images using a dynamic map. The map displays a
region of images ordered by similarity (A). Dragging the map to the up left
corner (B) reveals new images which are similar to shapes in the dragging
direction (C).

an effective browsing experience without intrusively querying the user. Third, a
local region of the map can be generated quickly, and there is no need for a long
computation time to generate the entire map. Thus, dynamic maps can provide
an on-line experience and support on-line changes to the underlying dataset.

Figure 2.1 illustrates the navigation process in our solution. The user views a
local subset of images, ordered such that similar images are next to each other. In
this particular example, the user views a region of cars, and decides to navigate
towards police cars. Another patch of the map is revealed, and instantly filled
with similar images to the images framed by the red rectangle. The currently
displayed map can be figuratively viewed as a window that shows a local patch
of the pseudo-map. Figure 2.2 shows screenshots of our system during typical
browsing sessions.

The challenge in generating such pseudo-maps is to create local manifolds
that keep the sense of continuity. That is, the user pans over the pseudo-map
while the manifold is perceived to be continuous. We present a technique of
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Figure 2.2: Screenshots of typical browsing sessions.
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embedding images onto dynamic pseudo-manifolds, where the relative positions
of images respect only local high-dimensional relations. Relative distances
among the displayed images are not necessarily preserved, allowing for an
efficient usage of the display space and a spatially dense representation of the
images domain. In contrast with common dimensionality reduction techniques
(e.g. MDS), the end result of our method is not a global map which contains all
images at once. The generated local pseudo-maps only exist temporarily within
the viewport of the user; when the user navigates to reveal a new region of the
map, only local relations to the previous map are maintained. Navigation over
the pseudo-map enables a free-form exploration, where users can quickly and
seamlessly direct the search towards relevant models of their choice.

The generation of local neighborhoods in the dynamic map is based on the
assumption that for high dimensional data such as 3D models, short distances
are more accurately measured than long distances. We thus use only the
shortest distances between images in our dataset; only the distances to k nearest
neighbors (with & being a small positive integer) of each image in the dataset are
considered. A dense set is expected to have shorter distances, and thus more
accurate, than a sparse set, hence our method is especially suitable for massive
datasets.

2.3 Related Work

2.3.1 Image browsing

Images have several characteristics that makes image search different than text-
based search. Unlike text documents, the content of an image can be grasped
at a glance, and a large number of images can be presented to a user at once.
In image search, often the user does not have an exact target in mind [Chung
and Yoon, 2011]. Furthermore, images often lack textual cues and might have
many different meanings embedded in a single image [Layne, 1994/, making
them difficult to support with only keyword-based search. For example, if the
user is looking for a scenery image to add to a presentation, the user would
not necessarily know how to phrase the search terms or even exactly which
image he or she is looking for. Moreover, images presented in the first page
of a text-based search result are not necessarily better than those presented
in the following pages. Consequently, users have to sequentially scan these
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results spending considerable effort finding relevant images. Still, most current
systems focus on providing text-based image querying rather than navigational
support even though studies have shown that image browsing can improve
in achieving user’s search needs [Combs and Bederson, 1999; Liu et al., 2004;
Pecenovi6 et al., 2000].

To address these needs, some research systems focus on supporting various
browsing capabilities to enable navigating through images. For example,
browsing specific clusters of images [Pecenovi6 et al., 20001, browsing hierarchies
that are automatically built according to visual and semantic similarities [Jing et
al., 2012], or browsing along conceptual dimensions according to hierarchical
faceted metadata [Yee et al., 2003]. Similarly, some commercial systems added
interactive visual contentbased search methods that allow browsing by similar
shape and/or color. The “similar images” feature, allows users to search for
images similar to a certain image, utilizing relevance feedback methods.

Laying out images on a large canvas allows users to browse the images ac-
cording to some organization of their structure using pan and zoom interactions.
In [Combs and Bederson, 1999], the results of an initial query can be browsed on
azoomable user interface (ZUI). In [PeCenovi6 et al., 2000], images were clustered
into conceptual regions. The user can continuously pan across this plane and
zoom in or out of any particular region. In JustClick [Fan et al., 2009], a topic
network is first generated and browsed through. Representative images of a topic
are then organized on a 2D hyperbolic plane according to similarity.

In the works above, the images are laid out according to some measure of
distance (in similarity) between them. However, when browsing images, there is
no need for an accurate representation of the original distances between images.
In fact, an even spread of images over the canvas can be more beneficial than an
accurate representation of the original geometry [Rodden et al., 19991, especially
in cases where the original data includes very distinctive clusters which may
appear too far apart for easy navigation. Indeed, the most common way to
lay out a set of images is on a twodimensional grid. Studies have found that
arranging a set of thumbnail images on a single-page grid according to their
similarity can be useful for users in an image browsing task [Liu et al., 2004].
Strong and Gong [Strong and Gong, 2008; Strong et al., 2010] employed this
idea and organized a collection of images based on similarity using an SOM-
based algorithm. Users could browse the image collection using pan and zoom
interactions. According to the authors their system could support browsing with
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up to 10,000 images. Similarly, in PhotoMesa [Bederson, 20011, images are laid on
alarge 2D grid. Users can browse through a large collection of images, panning to
browse horizontally or vertically through the image collection. Here, zooming out
enabled seeing the photos semantically grouped into preorganized categories.

The systems mentioned above work with a limited number of images and
are not scalable beyond several thousands of images. Thus, they are not suited
for large repositories that exist in the Web today. Our work builds upon the
idea of browsing images on a large 2D canvas, and the works in [Liu et al., 2004;
Rodden et al., 2001; Strong and Gong, 2008] that present similar images together
on a grid. However, we apply it to a dataset of virtually unlimited size, finding
solutions for interacting in such a large image space.

2.3.2 Shape browsing

A common means to explore large shape repositories is by searching for similar
shapes through a series of queries. The problem of searching for similar shapes to
a given query object is known as "shape retrieval". During the last two decades a
huge body of work in that area has focused on the development of various shape
descriptors and signatures to facilitate retrieval. Among them are descriptors
based on statistical moments [Elad et al., 2002; Novotni and Klein, 2003;
Kazhdan et al., 2003], distance [Osada et al., 2002], symmetry [Kazhdan et al.,
2004], volume [Zhang et al., 2001; Shapira et al., 2008]. For more information
see a survey by [Tangelder and Veltkamp, 2004]. An alternative approach was
introduced by Bronstein et al. [Bronstein et al., 2011]. Instead of global shape
signatures they compute local features such as Heat Kernel Signature (HKS) [Sun
et al., 2009], quantize them into geometric words, and use them in a bag of words
manner to discover similarities between shapes.

Shape exploration is commonly carried out by interactively navigating
through design galleries based on a parametric model [Shapira et al., 2009].
Design galleries have been used for model suggestions based on part cor-
respondence [Chaudhuri and Koltun, 2010; Kim et al., 2012] and semantic
context [Talton et al, 2009]. Vieira et al. [Vieira et al, 2009] utilize design
galleries for learning descriptive views of 3D objects, where the user supplies
the training data by selecting good and bad object positions. Another form of
exploration is presented in Yang et al. [Yang et al., 20111, where a shape space
is characterized from an input mesh and a set of non-linear constraints is then
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used for exploration and navigation of new designs that are aligned with the
given constraints. Umetani et al. [Umetani et al., 2012] present a method for
shape exploration (in this case - furniture) constrained by physical requirements.
The user is able to focus on the aesthetic side of the design while the system
enforces physical soundness. Ovsjanikov et al. [Ovsjanikov et al., 2011] extract a
deformation model from an input shape to explore in a constrained manner the
variability within a set of similar shapes.

2.3.3 Relevance feedback

Many recent search and retrieval systems, including both image and shape
retrieval, utilize relevance feedback [Rui et al, 1998; Leifman et al., 2005;
Cao et al., 2006; Akgiil et al., 2010], a method to refine search results using
selection of preferred elements. Suditu and Fleuret [Suditu and Fleuret, 2011]
presented an image retrieval system that features iterative relevance feedback for
a very large set of images. At each step, the user is presented with a set of images,
and selects a single image that is the closest match to the desired query. Then a
new set of images is displayed and the process is repeated.

While this process may be effective at filtering relevant images, the use of
relevance feedback in commercial search interfaces is still relatively rare [Ruthven
and Lalmas, 2003]. One possible explanation is that it requires users to make
relevance judgments on each item, which is an effortful user task [Ruthven
and Lalmas, 2003; Croft et al., 2001]. Relevance feedback tends to work best
when the user selects multiple objects as relevant as well as some objects as
irrelevant. However, selecting multiple objects is cumbersome for most users.
This is amplified in image search where extractable low-level features (e.g., color,
texture, shape) may not necessarily match high-level perception-based human
interpretation [Zhou and Huang, 2003]. Our method is inspired by that concept,
but operates on the implicit feedback given by the user’s advancement through
the dynamic map.

2.3.4 Planar Mapping
Generating a two dimensional map of high dimensional elements is in essence a

dimensionality reduction task. Common dimensionality reduction techniques
such as multidimensional scaling (MDS) or locally linear embedding (LLE)
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[Roweis and Saul, 2000] create a global manifold that aims to preserve the
distances among the high dimensional data points, to the extent possible. Such
global solutions are beneficial for applications such as clustering and classifi-
cation, which rely on the underlying geometry or spread of data. However, our
premise is that for browsing tasks, there is no need for an accurate representation
of the original distances between shapes. In fact, an even spread of shapes over
the map area can be more beneficial than an accurate representation of the
original geometry of the search space, especially in cases where the original
data includes very distinctive clusters which may appear too far apart for easy
navigation.

Our dynamic map bears some resemblance to the self organizing map (SOM)
[Kohonen, 19901, a popular dimensionality reduction method that produces a
dense and intuitive grid-like structure. The grid preserves similarity between
elements without preserving the distance. However, an SOM provides a global
solution, in which local discontinuities may occur frequently. In addition, it
entails a computationally intensive training process, which is applied globally
as a pre-process, making it difficult to use on a very large dataset with frequent
updates. Our technique is local and computationally inexpensive, which makes
it a viable option for massive online datasets of images which are constantly
changing.

Anumber of papers use dimensionality reduction techniques to map and then
browse an images space according to the global relations among images [Chen et
al., 2000; Pecenovio et al., 2000]. In order to better organize the images, layout
methods have been applied to MDS results to put them on a 2D grid [Rodden et
al., 2001]. Works such as [Sakamoto et al., 2004; Lasram et al., 2012; Strong and
Gong, 2008; Strong et al., 2010] use SOM to visualize a given small set of elements
in a global cohesive map.

Such methods work well for small sets, however they are too computationally
intensive and globally constrained to be effective for massive datasets. Perhaps
more importantly, it is not possible to capture all of the high dimensional rela-
tions in a single global low dimensional map. Therefore, global dimensionality
reduction methods cannot preserve continuity and local similarity everywhere
on the map. This issue is the underlying motivation of our work. Since our
method relies only on local relationships, our technique is locally smooth,
computationally inexpensive, and highly scalable.
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2.4 Map Generation

We provide the user with a dynamic grid-like map which is instantly and
continuously generated during user interaction. The input to the map generation
process is a precomputed nearest neighbors graph with a similarity score for
each edge. The map can be seeded around a specific image or constrained by
any number of images. As the user is navigating by panning the map, the map
is extended locally to the region of interest, using previously placed images as
constraints. The map is generated by iteratively filling in empty cells in the grid
with the most compatible image for each cell. The compatibility of a image to a
cell in the grid depends on the images that are already assigned to adjacent cells
in the grid; each adjacent image votes for its nearest neighbors as candidates,
and the scores of all candidates are accumulated to produce a majority vote.

Every image I in the dataset is associated with a list of nearest neighbors
I' € Near(I), and their respective similarity scores S(I,I’). Each cell ¢ in the
grid is connected to a weighted list of adjacent cells ¢; with respective weights
w;. For example, in our implementation each cell is connected to neighbors
on the five by five grid centered at the cell in question, with weights that are
inversely correlated with the Euclidean distance between the cells. We refer to
existing images that occupy the adjacent cells of cell c as reference images or R(c)
where each filled cell ¢; is associated with an image I;. The compatibility score
for placing an image ! in cell c is defined as the weighted sum of similarity scores
for each neighbor that appears in the list of reference images:

C’(I,c) = Z wi'S(I,Ii)

IiER(C)

where S(I, ;) = 0 when image /; is not a nearest neighbor of image /. At each
iteration, we choose a vacant cell c in the grid, and search for the image that
maximizes the compatibility score,

I, = argmax C(I,c).
I

To reduce the search space, we only consider images which are nearest neighbors
of the reference images. We exclude images that are already present on the map
from the candidates list, to avoid repetitions. Since the number of adjacent cells
is bound (depending on the grid size that is chosen), the computational cost of
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Figure 2.3: The map is filled in an order relative to the direction of browsing.
In this example, the user dragged the map two images up and one image to
the right. The gray dot and red dot, respectively, mark the previous and new
center of the viewport. The numbers state the order in which the first six cells
on the map are filled.

creating the map amounts to a small constant, independent of the dataset size.
This allows creating the map on-the-fly, during user interaction.

The voting process gives precedence to cells that are filled early in the map
generation process. We use this to further enhance the user experience, by
selecting the vacant cells in accordance with the user actions. In general, we
give precedence to cells that have the most filled cells which are direct neighbors
in the 8-connected grid. However, since the map is a regular grid, often there
will be ties and many cells will have the same number of reference images, for
example along the edge of the previous region of interest. We break ties using the
following process. We compute vectors from the previous center of the map to
each cell, and to the new center of the map. We then select the cell with smallest
angle between the map’s center vector and the cell vector. This causes the grid to
start growing from the user’s focus area on and outwards into the rest of the map.

Figure 2.3 illustrates the order in which empty cells in the grid are filled. The
user drags the map two cells up and one cell to the right. The center of the user’s
viewport thus moves on the map in the opposite direction; two cells down and
one cell to the left. The cells marked with numbers will be filled first in their
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Figure 2.4: Zooming out. The user hovers over an image and uses the mouse

scroll to zoom out. The image stays as a reference point and the images

around it are retrieved from a higher zoom level (the red box is only for
illustration and is not part of the interface).

respective order, followed by the rest of the cells on the grid. Existing images
which are closer to the panning direction effectively have more weight in the
map generation, since their neighbors are selected first.

The map-filling algorithm is simple and easy to adjust to custom graphs. It
can be applied to graphs of any shape, and does not require regularity or planarity.
Supporting weighted graphs requires a minute change in the compatibility score.

2.5 Interface Enhancements

2.5.1 Zoom levels

Our dynamic maps support zooming out to see a larger variety of images, and
zooming in on a region to see more similar images. We support zooming
operations by selecting a hierarchy of high-level delegates that represent every
image in the dataset. All images in the dataset are contained in the first zoom
level; every delegate in the second level represents a group of images in the
first level, every delegate in the third level represents a group of delegates in
the second level, and so on. For each zoom level we connect the delegates in a
nearest neighbors graph as described below.

When the user is browsing the map in zoom level /, only images of level
I' > 1 are displayed, and the k-NN graph of level [ is used. Note that higher level
delegates are not excluded from the map when browsing lower levels, and can
appear among low level images according to the low level £-NN graph. For zoom
in and zoom out operations, we keep the central image as seed image (or the
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image the user is focused on while performing the operation) and rebuild the
map around that image using only images that belong to the updated zoom level,
as displayed in Figure 2.4.

Delegate selection can be implemented using various algorithms, as long
as every image has at least one delegate in its nearest neighbors list. In our
implementation we use a straightforward algorithm, which can be done once
for the whole dataset or incrementally when new images are added. For each
image in the dataset, we check whether one of its nearest neighbors is already a
high-level delegate. If none of the nearest neighbors of the image is a delegate,
the image itself becomes a delegate for all of its neighbors. The same process can
be done when adding a new image to an existing dataset.

Next, a list of high-level nearest neighbors is created for each high-level
delegate M. A high-level neighbor is a delegate M’ that has at least one common
nearest neighbor with M. The score of the high-level neighbors is the maximum
accumulated score of the path in the £-NN graph that connects the two delegates:

S(M, M) = MVeNear(M)NNear(M") (S(M, M) + 8;(M", MT)).
If a delegate has more than & high-level neighbors, only the k£ neighbors with
the smallest scores are kept. This process is repeated recursively on the high-
level k-NN graph to create multiple zoom levels. The list of high-level delegates
and their £-NN graph is computed as part of the pre-processing, so there is no
additional computational cost for browsing when there are multiple zoom levels.

2.5.2 Focusing on an image

We provide the user with the option to focus on a single image by double clicking
on it. This regenerates the map around the clicked image in the lowest zoom
level (maximum similarity). The images in the rebuilt map are then more likely
to be similar to the specific image in focus rather than to the neighborhood of
images around it. This option also provides the user with another way to quickly
zoom in from higher levels.

26



2.6 Datasets and Implementation

We implemented dynamic maps for two large-scale datasets: one that contains
4,573 shapes, and another with one million images. The implementation details
of the each of these systems are described below. We conducted separate user
studies to evaluate these two systems. The results of these evaluations are in
Section 2.7.

In both implementations, the user interface displays a grid of shapes, pre-
rendered to image files, and enables the user to navigate in the shape space
by dragging the mouse cursor over the shapes. The grid pans according to the
drag command similar to the way it is done in online maps. As soon as the user
releases the mouse button when dragging, the map is populated with new shapes.
For zooming, we provide an interface similar to online mapping services, e.g.
Google Maps, in which the user sees the current zoom level and can click to
zoom-in or zoom-out of the current map. The map can be initialized from a
random location or from a manually set location, at the user’s discretion. In
addition, we provide a double-click feature which allows the user to quickly focus
on a single shape.

The implementation is divided into two separate systems. The user interface
and map generation algorithm were implemented as a single system using C#,
which can be linked with different types of datasets. The input of this system
are the thumbnails that represent the shapes or images, and a list of £ nearest
neighbors for each element. Computing the shape and image descriptors and
finding the k nearest neighbors of each element was done as a pre-process in
Matlab. After the computation of the nearest neighbors, there is no difference
between shapes and images which are both represented by a thumbnail in the
interface system. Thus, in the following paragraph we refer only to images even
though it applies to shapes as well.

During navigation, new images are loaded almost instantly after every
navigation action. Internal profiling of the system shows that the map generation
algorithm takes between 0.001 and 0.02 seconds for each page, depending on
the number of new images that are fetched. The bottleneck of our system is
loading the representative image files from disk which takes a portion of a second.
This proves that the algorithm is suitable for handling large datasets with ease.
Since the number of candidate images for each cell in the grid is bounded by a
constant, regardless of the number of images in the dataset, the time complexity
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Figure 2.5: Nearest neighbors of two shapes. (A) A case where LFD works
well. (B) Using LFD yields one relevant model out of the first eight. (C) Using
a combination of all descriptors yields four relevant models out of the first
eight.

of displaying the map should be the same for very large datasets that contains
millions of images. The space complexity is linear since only k nearest neighbors
are kept for each shape, so running the system with a very large dataset does not
require extraordinary computational resources.

2.6.1 Shapes

Our shapes dataset consists of 4, 573 shapes, collected from two SHREC datasets
[Vanamali et al.,, 2010; Li et al., 2012b] and the Shape COSEG Dataset [Wang et
al., 2012; Sidi et al., 2011]. To define the nearest neighbors of each shape, it is
necessary to effectively measure similarity between shapes. This is a fundamental
quesion in shape analysis that is one of the focuses of this dissertation. In this
project, we used existing state-of-the-art methods to compute shape similarity,
as described below.
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Many shape descriptors have been suggested for the task of shape retrieval.
A very popular one is the lightfield descriptor (LFD) introduced by [Chen et
al., 2003]. LFD consists of rendering orthographic silhouettes of the model
from ten different angles on a dodecahedron. To compare two models, the
rendered silhouettes of the models are compared. All possible rotations of the
dodecahedron (60 in total) are considered to compensate rigid rotations of the
compared models. LFD is one of the most effective descriptors to discriminate
between different shape classes [Tangelder and Veltkamp, 2004; Shilane et al.,
2004]. Yet, a nearest neighbors query using LFD may still contain irrelevant
shapes. An example is shown in Figure 2.5.

To identify similar objects where LFD fails to do so, we consider two more
shape descriptors. D2 descriptor [Osada et al., 2002] is a histogram of Euclidean
distance between pairs of points on the shape. The pairs are sampled in a way that
ensures invariance to triangulation. Last, we compute a histogram of the discrete
Gaussian curvature [Meyer et al., 2002; Atmosukarto et al., 2005], sampled over
each vertex in the shape. Each of the descriptors has different strengths and
weaknesses, and we aim at combining the results from all descriptors to identify
different aspects of similarity between objects.

The list of nearest neighbors for each descriptor is kept separately along with
the distance or score of the nearest neighbor. The lists are then merged to a single
list of k£ nearest neighbors by computing a normalized score for each candidate
that appears in one or more lists. The normalized score is based on the relative
distance between the neighbors compared to all other shapes in the dataset. This
way the descriptors which are more meaningful have a higher weight. Figure 2.5
shows an example of nearest neighbors search for two models. For each model
on the left, the nearest neighbors are displayed on the right, ordered in two rows
from left to right by their relevance score. For the bike model, LFD descriptor
works well, and indeed, our feature selection method retrieves the same models
as LFD alone. For the bird model, only the first model retrieved by LFD is relevant.
Note that there are several other bird models in the dataset which are a better
match for the query object, as can be seen in Figure 2.5c. Using our feature
selection mechanism, we retrieve four relevant models out of the first eight,
where the first nearest neighbor is retrieved using LFD and the rest are retrieved
using D2 descriptor.
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2.6.2 Images

For this dataset, we downloaded one million images in the public domain
(creative commons) from Flickr image hosting service. The image collection
spans photos with an upload date within a range of 400 days, where for each
day in the range a few thousands of random images were selected. This has
resulted in a diverse dataset which contains images of many different types, such
as landscapes, urban areas, people, wildlife, birds, vehicles and more. Computing
the k nearest neighbors for each image was done as a pre-process using Matlab
with k=20 and took a few hours for the entire dataset.

We find the & nearest neighbors of every image using three image metrics, or
image descriptors. The distance between two images in each descriptor space
is the Euclidean distance between the image descriptors. Average color and
color histogram are popular descriptors used in image retrieval [Deselaers et
al., 2008]. We used them as described below combined with the spatial envelop
descriptor [Oliva and Torralba, 2001].

Average Color. The image is divided into 16 segments, a four by four grid,
and the average color in each segment is computed. Similar images in this
metric tend to have a similar composition. Of course, the image partitioning
does not necessarily need to be four by four, but we find this partitioning
appealing in the sense that it seems fine enough to distinguish between images
with significantly different compositions, yet sufficiently coarse to ignore small
changes in composition of similar images.

Color Histogram. A joint color histogram for RGB values is computed. Each
color channel is divided into four bins, to create a total of 64 bins for every color
combination. The number of pixels that fall in each bin is counted and divided
by the total number of pixels in the image. Similar images in this metric have
similar color distributions, which suggest similar atmosphere or surrounding.
This descriptor is less sensitive to translation, rotation or reflection of the images
compared with the average color descriptor.

Spatial Envelope. The spatial envelope was described in [Oliva and Torralba,
2001] and named gist descriptor since it captures the gist or context of a scene.
The gist descriptor describes the spatial structure of a scene using a set of spectral
signatures which are specifically tailored for the task of scene recognition. It was
shown that in the gist descriptor space, scenes that belong to the same context
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Figure 2.6: Nine nearest neighbors are displayed for a few source images
marked with a red frame.

are projected close to each other. We use the code provided by the authors to
compute the gist descriptor of every image in the dataset.

The three descriptors are calculated for each image, and %k nearest neighbors
are found for each descriptor space separately. The distance from the image to
each nearest neighbor in each descriptor space is kept as well. The three lists are
then merged to a single list of k nearest neighbors by computing a normalized
score for each candidate that appears in one or more lists. Figure 2.6 shows an
example of nearest neighbors search for a few images in our dataset. For each
image on the left, the nearest neighbors are displayed on the right, ordered in
two rows from left to right by their relevance score.

2.7 Evaluation

In order to evaluate DynamicMaps, we compared it to a relevance feedback
method. Relevance feedback (RF) was chosen as the most prominent method for
similarity-based browsing, and the only one we are aware of, that can support
a corpus of millions of images. For simplicity, we implemented a standard
RF method rather than a more complex one (i.e., that might include negative
feedback). We employed a within-subject design to compare performance
and attitudes of participants. The main variable interface describes the search
interface used: DynamicMaps (DM), or relevance feedback (RF).

Interfaces. = Both DM and RF interfaces show a grid of 6x5 images at any given
time !. For the DM interface, we used the system as described above, initialized
with the starting image at the center, around which the algorithm builds the initial

! When evaluating shapes, 20 thumbnails were displayed on a grid of 5x4.
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screen grid of 30 images. For the RF interface, the system initializes showing
the starting image on the upper left corner followed by the 29 closest neighbors
on a grid. The user can then select up to 3 images and click a button (labeled
“more images”) to fetch the next set of images closest in similarity to the selected
images (ordered by similarity). At any time, the user can press the back button
and return to the previous screen. Both interfaces included a “restart” button
that returned the view to the initial screen formed by the starting image. As a
starting point, users could enter an image number in a provided textbox around
which the system initializes as mentioned above.

The evaluations presented here for shapes and images are somewhat different
for several reasons. First, this project was first developed and evaluated using
the shapes dataset. The evaluation of the images dataset occured several months
later, after developing the necessary adjustments to support a massive image
collection (mostly in the back-end of computing nearest neighbors for the
collection). Second, the experience of browsing a collection of a few thousand
shapes differs substantially from that of browsing a collection of one million
images. Finally, the massive collection of images allows more elaborate tests as
can be seen below.

2.7.1 Shapes

We employed a 2(method) x 3(task) within-subject design to compare perfor-
mance and subjective opinions of participants. The main variable, method,
describes the search system used and included either the Dynamic Map method
(DM) or the Relevance Feedback method (RF).

The second variable, task, describes the tasks that participants were asked to
perform. Three different task types were given:

1. Choose a model out of the collection according to subjective preferences
(e.g., “find a dining room chair that you would like to have in your home”)

2. Find multiple models in a category (e.g., find ten different types of four
legged animals such as horse, cow, dog, etc).

3. Given a specific reference image of a model, find that specific model in the
collection (e.g., a model of an electric guitar with very distinct body shape
was provided. The starting point was a collection of guitars).
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For each task type, we devised two similar tasks to be performed. For example,
for the third task, either an image of a guitar or an image of a person was given.
In addition, for each task, a starting shape was determined. The starting shape
was located in the vicinity of the target/s (e.g., for finding a dining room chair,
the starting point was a swiveling office chair). For the DM method, the starting
shape was used as a basis to create the initial grid. For the RF method, the nearest
neighbors of the starting shape were presented as the initial grid.

Sixteen (16) participants took part in the experiment. Participants were mainly
students from a local university. Eleven participants were male and five were
female with an average age of 29.5 (SD = 5.2). All participants had previous
experience with searching images on the Web, and no participants had previous
experience with searching 3D models.

Participants were seated in front of a 22" screen with 1600x900 pixel resolution.
This allowed for a grid of 5x4 models to be displayed. Participants were then
presented with one of the two methods. The user interface features were first
explained to the participants, who were then allowed to freely browse around the
model space using the interface until they felt comfortable using it. Participants
were then given the three tasks one after another and were asked to perform
each task as best as possible. When they completed all three tasks, participants
were asked to fill in a questionnaire on their subjective opinion of the interface.
Participants were then presented with the second interface on which they
completed the same procedure (using three different tasks of the same task
type). At the end of the experiment, a comparative questionnaire was given. The
order of interfaces (which interface was first used) as well as which set of tasks to
perform on which interface was counterbalanced.

Results.  Figure 2.7 presents the average amount of search time per task for
both methods. A two-way ANOVA was conducted to assess the time differences
between the two methods. Results indicate that it took participants significantly
less time to search with the DM method than with the RF method, F(1,15) =
44.1, p<0.001. A post-hoc analysis using the bonferroni adjustment, examining
each task separately, showed that there were also significant differences between
the two methods in tasks 1 and 3 with task 2 being very close to significance
(p=0.052). It should be noted that seven participants in the RF condition were
unable to complete task 3 compared to only one participant who was unable to
complete the task in the DM condition.
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Figure 2.7: Average search time for the three tasks in both the DM and the RF
methods (N=16). Error bars display 95% confidence interval.

Statement DM RF p-value
The search was enjoyable 5.43(1.26) | 3.65(1.5) 0.003
The system was effective for the search purposes 4.56(1.67) | 3.50(1.71) | 0.065
The system limited my possibilities 4.31(1.4) | 5.25(1.52) | 0.095
During the search, I stumbled across items I didn't think about | 5.25(1.52) | 5.06(1.94) | 0.687
I easily understood how to use the interface 5.56(1.71) | 6.12(1.58) | 0.331
I easily understood the efficient way to conduct the search 5.12(1.45) | 3.68(1.30) | 0.005
It was easy to conduct the searches 5.12(1.31) | 3.37(1.58) | 0.007
During the search I felt frustrated 3.37(1.66) | 4.93(1.73) | 0.021

Table 2.1: Average ratings and standard deviation of the two interfaces.
Ratings are given on a 7-point Likert scale ranging from strongly disagree (1)
to strongly agree (7). P-values of the Wilcoxon signed test, comparing the two

provided interfaces.

Next, we analyzed participants’ opinion of the interfaces. Table 2.1 presents

the set of statements presented to participants after interacting with each method

(DM and RF) as well as their average responses. Ratings were given on a 7-point

Likert scale to indicate how much participants agreed with each statement,

ranging from strongly disagree (1) to strongly agree (7). With ranked ordinal data

and a relatively small sample size, it is recommended to use a nonparametric

statistical test [Huck et al, 1974]. We therefore used the Wilcoxon signed

nonparametric test to examine differences in ranking between the groups. As can

be seen in Table 2.1, results indicate a preference to the DM method on almost

all questions.
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Statement DM | RF | No opinion
Which system was more effective for task 1? 11 3 2
Which system was more effective for task 2? 11 5 0
Which system was more effective for task 3? 9 4 3
Which system was more effective overall? 11 3 2
When you have a vague idea of the search, which system is better? | 12 4 0
When the target of the search is clear which system is better? 8 7 1
Overall, which system do you prefer? 12 2 2

Table 2.2: Direct preferences between the two interfaces (N=16).

Finally, we analyzed the direct comparison questions given at the end of the
experimental session. These results are presented in Table 2.2.

Evaluation Summary. Overall, participants clearly preferred the DM
method over the RF one. This is demonstrated both in the direct comparison
results (Table 2.2) and in the independent ratings of each interface (Table 2.1).
Participants felt that the DM interface was more enjoyable, effective, efficient
and easy to use. Together, these measures are used as an indicator of a system’s
usability [Brooke, 19961, thus our results suggest that the DM method is more
usable than the RF method for the given search tasks. Better efficiency is also
indicated by the fact that participants completed their tasks faster using the DM
method.

2.7.2 Images

Tasks.  Tasks were designed to be open-ended and reflect real-world search
needs (similar to [Rodden et al., 2001; Yee et al., 2003]). Two general tasks were
defined for the within-subject design. In each task participants were asked to
find images that would best fit text slides of a given presentation. For example,
the first presentation was on a non-profit organization titled “the society of
preservation of nature”. The initial slide was a title slide, the second slide talked
about the organization’s mission, the third slide talked about the history of
the organization and the final slide talked about the major active projects the
organization employs today. All slides included only text with no color or graphic
design. Participants were asked to find up to three images that would best fit
each slide. The second presentation was similar in nature and had to do with
architecture. For each task, participants were given four starting points in the
interface. This emulated four possible keyword search queries. The starting
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points were chosen as single images relevant to the task (for example, images of
animals or nature for the previously mentioned task).

Participants. A total of 24 participants took part in the study, 11 were male and
13 were female with an average age of 27.1 (SD = 5.1). Participants were mostly
students of a large university from a wide range of departments and faculties. All
had normal or corrected-to-normal eye vision. 15 participants reported searching
on the Web for images every week, while 5 participants reported searching every
two weeks or so and 4 reported a lower rate. Image search task reported including
finding images for presentations, looking for images for study purposes, looking
for products and more. Most participants indicated using Google images as their
main image search tool.

Procedure.  Participants were seated in front of a 22” screen with 1440x900
screen resolution. Participants were then presented with one of the two interfaces.
The user interface features were first explained to them, after which participants
performed one practice task on which they were instructed to use the interface
until they felt comfortable with it. Participants were then given one of the two
tasks and were asked to perform the task as best as possible. No time limit was
given for the task. After they completed the first task using the first interface
participants were asked to fill in a questionnaire asking their subjective opinion of
the interface they just used. Participants were then given the second interface on
which they completed the same procedure using the second task. All interactions
with the interfaces were logged and later analyzed. At the end of the experiment
a comparative questionnaire was given and participants were asked to comment
on each interface. The order of interfaces (which interface was first used), as
well as which task set was used with which interface was fully counterbalanced,
creating four different configurations (six participants in each configuration).

2.7.2.1 Results

Order effects.  To rule out order effect (whether participants started with the
DM or the RF interface), we performed a between-subject ANOVA with interface
order as the independent variable on both task completion time and on number
of unique images seen. No effect was found for both variables. Next, to ensure
there were no differences between tasks we performed a within-subject ANOVA
with task as an independent variable. Again, no effect was found for both task
completion time and number of images seen.

36



DM RF F p-value
Images seen per minute 230.0 (51.9) 104.5 (51.0) 98.2 <0.001
Unique images seen per minute | 98.4 (21.1) 49.3 (18.6) 107.6 | <0.001
Task completion time in seconds | 805.8 (334.4) | 761.5(348.9) | 0.55 0.47

Table 2.3: Average (and standard deviation) number of unique and non-
unique images seen per-minute, and task completion time.

Completion time. On average, it took participants 805.8 seconds ( 13.5
minutes) to complete the task in the DM interface (SD = 334) and 761.5 seconds
(12.7 minutes) in the RF interface (SD = 348). A one-way repeated-measures
ANOVA on task completion time did not find these differences to be significant,
F(1,23) = .55, p = .47.

Amount of Interaction. = We compared the amount of user interaction with
each of the interfaces. In the DM interface, an interaction is performed either by
dragging the mouse to pan the view in order to bring up more images (number
of pans), by zooming in or out (number of zooms), or by doubleclicking on a
single image to bring it to the center. In the RF interface, an interaction translates
into a “more images” or “back” press which brings up the next or previous set of
images (number of presses). Thus, we compared the number of pans + zooms
+ double clicks in the DM interface with the number of combined “more” and
“back” presses in the RF interface. Results indicate that there were many more
interactions per task in the DM interface (M = 158.4, SD = 93.3) than in the RF
interface (M = 35.9, SD = 31.4). A one-way within subject ANOVA on number of
interactions showed these differences were significant, F(1,23) =90.9, p < 0.001.

Amount of images seen.  Analyzing the log files, we summed up the amount
of images seen in each interface. We examined both the total amount of images
seen in a specific task, and the total amount of unique images seen, since some
images may appear several times during the same task. With the RF interface,
the total amount of images seen is equal to the number of interactions (as listed
above) plus 1 (for the initial screen) times 30 (each screen showed a grid of 6x5
images). In the DM interface, each pan adds a different amount of images to the
screen depending on the pan position. We counted the 30 initial images, and
then added the newly filled images in each pan. A zoom, restart, or doubleClick
event brought 30 more images. For the unique images seen, in both interfaces,
we counted the unique images presented from the beginning till the end of the
task. Because there were large individual differences in task completion time, we
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Figure 2.8: Average number of pans made and number of images seen in
each of the five zoom levels (level 1 being images that are most similar to each
other).

normalized these results over time and measured the total number of unique and
non-unique images seen per minute. Results, presented in Table 2.3, indicate a
large, significant difference in both total and unique number of images seen per
minute. Users using the DM interface have seen significantly more total images
per minute than when using the RF interface, F(1,31) = 98.2, p<0.001. Users using
the DM interface have also seen more unique images per minute than users
using the RF interface, F(1, 23) =107.6, p < 0.001.

Zooming. All participants used the zooming feature often, with an average of
39.6 times per session (or 2.94 zoom events per minute). To better understand
the usage of Dynamic Maps, we analyzed the use of the zooming levels. Figure 2.8
shows the number of pans made and number of (non-unique) images seen in
each zoom level. As can be expected, most interaction was done in the first zoom
level, with interaction dropping heavily after the first level.

Subjective opinions.  After using each interface, participants were presented
with a set of statements and were asked how much they agreed with each one
on a 7-point Likert scale ranging from strongly disagree (1) to strongly agree
(7). Table 2.4 presents these statements and the visitors’ responses with both
interfaces. A Wilcoxon Signed Ranked non-parametric test did not find significant
differences in ranking of any of the statements between the two interfaces.

At the end of the experiment, we presented participants with a final ques-
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Statement DM RF

The system was efficient for the search tasks 4.20 (1.14) | 4.15(1.22)
The system limited my options 4.75(1.69) | 4.91(1.28)
The search was fun 4.63 (1.24) | 4.33 (1.16)
I quickly understood how to use the interface 5.87 (1.19) | 5.87(1.11)
During the search I felt frustrated 3.25(1.64) | 3.54(1.84)
I am satisfied with the images I picked for the presentation | 5.10 (1.25) | 4.83 (1.00)

Table 2.4: Participants average ratings (and standard deviation) per interface
on a 7-point Likert scale (N = 24).

Statement DM | RF | No pref.
Which system was more efficient? 12 8 4

When you have a vague idea of the search target, which system is better? | 15 7 2

When the search target is clear, which system is better? 7 15 | 2
Which system is best to see a wide variety of images? 16 5 3
Which system is easier to learn? 6 7 11
Which system do you prefer overall? 15 8 1

Table 2.5: Number of participants preferring each interface on a list of criteria
(N = 24).

tionnaire asking them for their preference of interface on a list of criteria
(Table 2.5). Results indicate a general preference toward the DM interface,
although preference was not absolute. Most participants thought the DM
interface was more efficient and preferred it overall. It is interesting to note
that most participants thought the DM interface is better when there is a vague
idea of the search target and for seeing a wide variety of images, while there was
a general preference for RF when the target is clear.

2.7.2.2 Discussion

Our results indicate that Dynamic Maps provide a more interactive experience
for the users and allows them to view a wider variety of images than previous
methods. Participants viewed many more images (both unique and non-unique)
per time with the DM interface compared to the RF interface. While the way of
interacting in the two conditions is quite different, still, many more interaction
events were measured in the DM compared to the RF interface. Thus, it seems
that participants viewed more images by actively interacting more with the
interface. It should be noted that we cannot be sure that participants actually
saw all the images that were displayed on screen. RF actually forces the user to
more closely examine each image, while DM better supports scanning through
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images. This may help to explain the large difference in the amount of presented
images.

Dynamic Maps provides immediate and continuous interactive feedback
that does not require the user to make conscientious sequential selections, but
rather asks the user to visually choose a direction to follow based on general
perceptive cues. Thus, it affords easier and faster movement in the image space,
with less sense of commitment, enabling the user to see a wider variety of images
(a fact also realized by participants in the subjective preference questionnaires).
This can also be look at from a cognitive load perspective. Cognitive load in the
information retrieval context can be seen as a measure of information processing
effort a user expends to comprehend the visual stimuli and interact with the
system [Hu et al., 1999]. Using the RF interface, the user needs to go over every
image and explicitly provide a relevance judgment on the image, a process that
requires a high state of cognitive load [Back and Oppenheim, 2001]. Dynamic
Maps are less cognitively demanding since the user does not need to make a
decision regarding each and every image, but can rather follow general visual
cues. As one participant wrote, “I prefer DM. Less mouse clicking. Dragging is
easier then thinking of which images will bring me closer. In DM you can see a
larger range of images at once without the need to choose and click over and over”.

Having easier interaction capabilities and viewing more images per time unit
is more useful when the search is vague and it might be difficult to select specific
images that lead directly to the target. It is then easier to experiment, and follow
one or more visual search directions than to select specific images. Another
advantage of faster and more interactive browsing is that it can better support
serendipity in the search process, since users interact more and may stumble
upon different areas. It is easy for users to explore regions they may not have
envisioned. This was reflected in a statement of a participant: “It is possible to
reach different directions, thoughts and ideas that I have initially not thought
about’.

Zooming was often used and was referred to by participants as being very
useful. The Zooming option enabled the users to step back and get a wider view
of the current corpus. It also supports getting a more diverse view, with the
diversity level controlled by the user. Furthermore, using zoom out and pan, the
user can view the different topics and content available in the current corpus
using simple interactions. This can be useful to get an overview of the image
corpus.
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No overall significant difference between the interfaces was found for task
completion time. Completion time is often looked at as a measure of efficiency.
However, in the current study, the task was open-ended and participants were
asked to take as much time as needed to find the best possible images. Thus,
we do not think that in this case completion time is an indicator of efficiency or
quality. On the contrary, it might be that more time spent on the task indicates
that the interface was more engaging and caused users to search more thoroughly.
Similarly, other studies have found no correlation between task completion time
and quality of results or user satisfaction [Rodden et al., 2001].

Finally, we note that many participants mentioned that Dynamic Maps were
enjoyable and the interaction with it was much more smooth and fun to use than
the RF interface (e.g., “The [DM] system is enjoyable, it is easy to operate and it
naturally flows”). We believe that this will be highlighted even more when using
the system with touchbased interfaces. With its pan-based interaction, Dynamic
Maps should be ideal for searching images on a Tablet computer, for which the
playfulness of Dynamic Maps would be even more prominent.

2.8 Conclusion

We present Dynamic Maps, a technique for browsing a very large set of shapes,
images or any other high-dimensional object which can be represented by a
thumbnail. In our method, objects are laid out on a two-dimensional dynamic
map thatis locally updated according to user navigation. Dynamic Maps enable a
smooth, fast and more interactive experience that is best suitable for exploratory
search, when the search target is vague. It is also useful for serendipitous
browsing in exploring regions not envisioned by the user and for getting a wider
view of the corpus. Further work may explore using semantic information in the
similarity measures as well as combine Dynamic Maps with keyword search.

One of the most prominent features of our approach is the locality of the
solution. The local approach enables the construction of an unconstrained, easy
to use and highly scalable system; it can support massive datasets containing
millions of models with ease. It can also easily handle frequent changes in the
dataset. The local nature of the algorithm allows for a seamless addition of shapes
or images, and other on-the-fly changes. This cannot easily be accomplished by
other global feature preserving techniques. At the same time, some limitations
stem from this locality.
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Since we do not keep models outside the current boundaries of the map,
models may be repeated during a browsing session, appearing at multiple
locations on the map. In practice, it is possible to prevent some repetition of
models by excluding models that were recently seen from the search space and
remembering previously generated patches on the map. However, this requires
a delicate balance, since keeping previously seen regions of the map creates
global constraints that often cannot be fully satisfied. Informal feedback from
participants in our user study suggests that users do not feel the repetition of
models is hindering the user experience, since it is usually easy to avoid by
navigating away from seen models, or using the zoom ability to view a greater
variety.

Another limitation of our system is that it may be difficult to find non-
dominant concepts or particular images. The appearance of a certain image
on the map does not guarantee the appearance of all similar images. Rather,
only similar images which match the current browsing direction are displayed.
Thus, a specific image may be hard to locate. If a concept rarely appears, the
user will be unlikely to find it as it will be hidden within another area. This is
due to the voting mechanism which ensures only shapes that are relevant to the
surrounding appear on the map, thus pruning outliers.

The presented method is most suitable for free-form search, where the user
does not have a specific target in mind, and the goal is to browse a variety of
shapes rather than retrieving the single most relevant shape. A primary goal
of the dynamic map is to aid the refinement of 3D object search. As such, it is
our vision that the technique is used in tandem with keyword shape search. In
such a setup, the dynamic map can be seeded around an shape which is the
best match for the textual keyword search, to provide the user with a variety of
objects that resemble the best match. The map generation method is decoupled
from the construction of the £-NN graph, which makes the method applicable
for other domains as well, such as searching text documents or any kind of high
dimensional data.
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3 Semantic Similarity from Crowd-
sourced Clustering

Figure 3.1: Nearest neighbors of the center image in a collection of movie
posters, computed using image descriptors (left), and crowdsourced queries
(right). Smaller images mark farther neighbors.

It is extremely hard to define a distance metric that would capture well the
intuitive or semantic similarity between images (see Section 1.1). State-of-the-art
analytical methods for computing such a metric fall short when similarities are
derived from a broad semantic context. Consider, for instance, the similarity
between the movie posters in Figure 3.1. Identifying such similarities is usually
easily done by a human observer, but pose a hard computational problem

nonetheless.

The natural solution is thus gathering information about semantic similarities
between images from people, for example using a crowdsourcing technique.!
This approach was taken in recent work to collect style similarity measures [Lun et
al., 2015; Saleh et al., 2015]. The typical comparison task that the crowd performs

! Crowdsourcing is a general name for processes that involve posing many small-scale tasks to
the crowd of web users, and piecing together the crowd’s answers to achieve a larger-scale goal,
such as constructing a large knowledge base.
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is of the following form: given three images A, B, and C, choose whether A is
more similar to B or to C (a triplet query). Assuming consistent query responses,
querying every image triplet yields the full relative similarity metric over the set
of images. However, the number of triplets is prohibitively large. Thus, typically
only a sample of the triplets are queried and the rest are estimated based on
extracted image features [Lun er al., 2015; Saleh et al., 2015]. In addition, such
queries lack context which is often necessary in order to perform comparison
tasks (see Figures 1.3 and 1.4).

In this work, we propose an alternative approach for learning image simi-
larities based on clustering queries posed to the crowd. Instead of queries of
three images, crowd members are given a small set of images and are asked to
cluster them into bins of similar images using a drag-and-drop graphical Ul (see
Figure 3.2). While a single clustering task requires more effort than comparing
three images, our approach has two important advantages. First, the results of
a single clustering task provide a great deal of information that is equivalent to
many triplet comparison tasks. Images placed in the same bin are considered
closer to one another than to images in other bins, so triplets can be formed from
each pair of images in the same bin along with any third image from another bin.
Second, each query provides crowd members with additional context that assists
them in performing a more faithful and meaningful comparison.

A key observation of this work is that a similarity metric can be constructed
more efficiently by performing comparisons on similar images rather than non-
similar ones. This is true in particular in the context of semantic similarities,
where local similarities are often more meaningful. Following this observation,
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Figure 3.2: An example of the clustering interface. (a) The user is presented
with 20 images to cluster into the four bins on the right. (b) The bins may
contain as many images as necessary. When all images are clustered, the user
can submit the query and receive another one.
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we develop a novel, adaptive algorithm that aims to generate queries that are as
local as possible. The challenge here is that similarities are unknown in advance.
Thus, our algorithm works iteratively. At each phase we generate and pose
clustering queries to the crowd. As information is collected, we progressively
refine the queries to focus on similar images in a narrower local neighborhood.
Local similarity comparisons are embedded in Euclidian space to obtain a refined
estimation for the global similarity metric. This refined metric is then leveraged
for computing more locally-focused queries in the next phase. This progressive
method efficiently converges to a meaningful similarity estimate.

Evaluation and experimental study.  To test the efficiency of our approach,
we implement our technique in a prototype system, and use it to conduct a
thorough experimental study, with both synthetic and real crowd data. First, we
test our technique over two image datasets where the ground truth is known,
examine the results and compare them to a baseline approach that uses the
same number of queries but chooses them randomly. Second, we compute the
k-NN images for real-world image datasets, where the ground truth is unknown,
and evaluate the results manually. Last, we study the effect of parameters such
as the number of phases and queries in a series of synthetic experiments. Our
experimental results prove the efficiency of our approach for computing semantic
image similarity based solely on the answers of the crowd, while using a relatively
small number of clustering queries.

Throughout this chapter we again focus on similarity between images.
However, since we rely solely on crowd queries, our method is suitable for any
objects that can be represented by images or thumbnails. In our experiments,
we estimate similarities between 3D shapes (represented by a single rendered
image) and fonts. Other possibilities include words, videos (represented by a few
significant frames), celebrities, and more. Crowd members can also be instructed
to relate to specific properties of the presented object. For example, they can be
instructed to cluster the faces of politicians according to their views, rather than
according to their physical similarity.

3.1 Related Work

The classification of images is a well-studied problem. A common paradigm is
based on image descriptors, such as the color histogram of images, SIFT based
descriptors [Lowe, 1999], or GIST descriptors [Oliva and Torralba, 2001]. The
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distance between two images is defined as the Euclidean distance between
the image descriptors, on top of which machine learning techniques can be
employed to find similarities or clusters of the images (e.g., [Wang et al., 2009;
Zha et al., 2008]). Other methods employ a bag of features (BoF) approach,
using visual segments [Sivic and Zisserman, 2003] and/or textual annotations,
either attached to the images manually or from the textual context of a web page
(e.g., [Wang et al., 2009; Zha et al., 2008]). However, such methods fall short when
classification relies on semantically-rich features, which may be hard to learn
from the images, and may only be partially reflected in the labels.

Semi-supervised learning methods can alleviate the problem of lacking
semantic features. These methods rely on manual labeling of a small set of
image pairs or triplets, rather than per-image labels for the entire set. A large
body of work has attempted to classify images by using pair-wise labeling
consisting of equivalence (or inequivalence) constraints, i.e., whether or not
the pair belongs to the same class [Bar-Hillel et al., 2005; Biswas and Jacobs, 2014;
Weinberger et al., 2005; Xing et al., 2003]. Triple-wise constraints are more
relevant to relative comparisons of images, as they compare the distances of
two image pairs [Frome et al., 2007; Lun et al., 2015; O’'Donovan et al., 2014;
Saleh et al., 2015; Tamuz et al., 2011]. The constraints can then be used to
learn a distance metric between images. In particular, the work of [Tamuz
et al., 2011] focuses on adaptively selecting optimal triplets based on crowd
input. In the recent work of [Lun et al., 2015; O’Donovan et al., 2014; Saleh et
al., 2015], triple-wise comparisons have been collected from crowd members in
order to learn about style similarities. While these studies highlight the need in
collecting similarity comparisons from the crowd, the use of triplet comparisons
has shortcomings that our work addresses: this approach requires many crowd
tasks, and users are not given context for comparison. These shortcomings were
also noted by [Wilber et al., 20141, a study that focuses on redesigning the user
interface to derive more image comparisons from each crowd task. This is done
by asking users to select the X most similar images to a given image, out of a
set of Y images. The new interfaces of [Wilber et al, 2014] is a step forward
from triplets, but in contrast with our work, their study does not consider how to
effectively choose images to compare.

Another work highly related to ours is Crowdclustering [Gomes et al., 20111,
which considers clustering images with the crowd. Each crowd member obtains
a sample of a few images (a query) and classifies them into groups. This input
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is used to train a Bayesian model which estimates the ways different crowd
members may classify each image. This work resembles ours in letting the user
cluster a small set of images, and also in the idea of refining the clustering results
by re-applying the technique on the obtained clusters. However, their technique
is not designed to compute image similarities. In contrast, we employ the
progressive refinement to determine image similarities with faster convergence.
We compare the performance of our techniques with [Gomes et al., 2011] in
Section 3.3.

The work of [Yi et al., 2012] suggests to only obtain query answers for a small
fraction of the data, and use dedicated matrix completion techniques to complete
the missing classifications, rather than requiring that every image appears in at
least one query as in [Gomes et al., 2011]. This work is orthogonal to ours, and
can be employed in our case if the number of queries that can be asked is small
relative to the number of images.

Crowdsourcing has been employed for tasks related to ours such as record
matching based on images [Marcus et al., 2011], grouping and top-% [Davidson et
al., 2013], and entity matching [Wang et al., 2012]. However, no previous work has
considered the problem of learning an image similarity metric, nor can be applied
in a straightforward manner for this task. For example, £-NN may be viewed
as finding the top-k most similar images for each image; however, applying the
method of [Davidson et al., 2013] for each image separately is inefficient.

3.2 Algorithm

We next describe our method of generating queries to the crowd based on
an estimated similarity metric, and of refining the similarity metric based on
answers from the crowd. We aim to use queries that involve images from the
same local neighborhood, which are more effective for determining the global
similarity metric.

Our algorithm generates clustering queries by selecting sets of n, images.
The answer obtained from crowd members is a division of this image set into 7,
clusters. The crowd is a relatively expensive resource in terms of latency, human
effort, and often monetary cost as well. Therefore, in many practical cases, the
total number of queries that can be asked is restricted by a predefined budget.
Given such a budget, the goal of the algorithm we develop is to utilize the queries
in the best way possible, by considering only local neighborhoods. This yields
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an iterative process, where local neighborhoods change according to queries
results.

Our method estimates local distances by maintaining an embedding of
the entire set in Euclidian space, in which the distances are calculated. The
embedding is initialized randomly, and local neighborhoods are progressively
improved. The embedding ensures that even distances that were not queried
are consistent with the partial information derived from queried distances. To
improve the embedding of local neighborhoods, we pose queries to the users
in small batches, and update the embedding after each batch. Interestingly,
querying local neighborhoods of the embedding proved beneficial even in early
stages when the images are not necessarily semantically close, since such queries
provide many constraints on the same neighborhood. In addition, in each
iteration we wish to preserve the close neighbors which are already semantically
similar. Even in a random embedding, local neighborhood based queries help to
detect and preserve cases where some neighbors are also semantically similar.

The main steps of the algorithm are illustrated in Algorithm 1: As input, the
algorithm takes the total number of allowed queries (budget) and the number of
queries to generate at each iteration (batch_size). The results of the queries are
integrated into the embedding (E) and the induced global distance metric (D).
The output of the algorithm is the distance metric computed based on the last,
most refined embedding.

Clustering query.  For a set of images 7, we define a query @) as a subset of 7
containing n, images. The answer to each query is a division of () into disjoint
clusters (1, ..., C,, C Q. From these answers we extract similarity comparisons:

Algorithm 1: CrowdSter(budget, batch_size)

1: E = EmbedData() // random embedding
2: num_of_queries = 0

3: while num_of_queries < budget do

4: Q = SelectQueries(E, batch_size)

5: R = RunQueries(Q) // using the crowd
6: D = DistanceFromEmbedding(E)

7: D = UpdateDistances(D, R)

8: E = EmbedData(D)

9: num_of_queries += batch_size

10: end while

[y
[y

: D = DistanceFromEmbedding(E)
: Qutput D

[
N
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given two images x,y in cluster C;, and a third image = in a different cluster
Cj, we infer that A(z,y) < A(z,z), where A represents the similarity metric.
As n, increases, we obtain more comparisons, but the number of images in a
query should be small enough to allow a crowd member to view them [Marcus
et al., 2011]. In our experiments, we found that n, = 20 is a good balance of
this tradeoff between effectiveness and simplicity. Following this, we found that
setting the number of clusters n. to 4 is optimal, as it balances between inferring
more comparisons (smaller n. values) and quickly pruning less similar images
(larger n. values).

Generating queries. Queries are generated in our algorithm based on the
embedding from previous phases. In each phase, we generate queries that (a) are
local, and (b) cover the set of images as evenly as possible. To do so, we sample
random images uniformly while making sure they are not nearest neighbors of
each other. When no such samples remain we start over. For each sampled image,
we find its k£ nearest neighbors in the embedding. Then, out of these neighbors
we sample a random subset of size n, and use it as the next query.

Embedding. We maintain an embedding of all images in the dataset in a
d-dimensional space. The embedding infers a consistent distance between every
pair of images, to be used in the next phase, and is gradually improved with each
batch of queries. In our experiments, we used d = 6. We also experimented
with higher values of d, but there was no significant effect on the efficiency
of our method. Before the first queries are sent to the users, the images are
embedded into the Euclidian space using a uniform random distribution. To
gradually improve the embedding, we calculate the distance between each pair
of images in the embedding, update the distances according to the query results,
and embed the images again using the updated distances. This consolidates the
updated distance and resolves any inconsistencies among them. To compute the
embedding we use multidimensional scaling (MDS), whose input is the distance
between each pair of images.

More specifically, we want to find an embedding by taking into account
only distances that we have information of (via query results), ignoring all
other distances. For this we use Sammon Projection [Sammon, 19691, which
is a multidimensional scaling technique that computes an embedding using a
stress function and gradient descent. The weighted stress function can take into
account the relevant distances and ignore other distances by giving them a very
small weight. All weights are initialized to a very small value e. In each phase, we
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set the weight for each updated distance to 1. Distances that were updated in
previous phases maintain a weight of value 1, so once a pair of images is queried
its distance is always taken into account when computing the embedding in
subsequent phases.

Updating the distance. = To update the distance, all the query results in the
batch are aggregated and analyzed. For each pair of images in each query, we
refer to a query result as positive if the images were assigned to the same cluster,
and negative if the images were assigned to different clusters. The distance
between a pair of images is shortened if the pair has more positive than negative
query results, and made longer if the pair has more negative query results. The
distances between pairs of images for which there was a tie and pairs of images
that did not appear in the same query are not affected.

Distances are shortened by dividing by 5 and are made longer by multiplying
by S. In our experiments £ is set to 4. Note that we do not take into account the
number of times a pair of images appeared in the same batch of queries. For
example, a pair of images that has two out of two positive query results is updated
in the same manner as a pair of images that has three out of four positive query
results. Since the phases tend to be short, the probability that the same pair of
images will appear in many queries is small, and inferring from the exact ratio
between positive and negative results is too sensitive to randomness.

3.3 Experiments

To evaluate the efficiency of our approach, we conduct three sets of experiments,
described below. First, to verify the correctness of our approach, we conduct a
set of small-scale experiments for a data set where the ground truth is known.
This ground truth allows evaluation of the result quality. Second, we test the
practicality of the approach for semantically-rich image similarities, using larger
sets of images, where the ground truth is unknown. Finally, to further investigate
each component of our solution, we conduct synthetic experiments where the
ground truth similarity is known, and crowd answers to queries are simulated
accordingly instead of using real crowd. We vary different parameters of our
system, and observe the effect on the output quality. In all sets of experiments,
we further compare the results we obtained to alternative, baseline algorithms.
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¢ Random: Randomly select queries, equivalent to executing our algorithm
in a single phase.

e Crowdcluster: Using the method of [Gomes et al., 2011]. The results of this
method are targeted to identify clusters, but also include a mean spatial
location for every image, which we use as an alternative to our embedding.

¢ Feature-based: Estimate the similarity of images based on automatically
extracted image features, which serves as a baseline where ground truth is
not available.

Implementation and crowd UL.  Our crowdsourcing system includes a dedi-
cated, user-friendly crowd interface. The UI of the system is implemented on
the Google App Engine platform. The back-end analysis of the crowd answers
and the computation of the next queries to be posed to the crowd is performed
in MATLAB R2014b. A screenshot of the Ul is shown in Figure 3.2. Initially, we
display 20 images on the left-hand side of the screen (the query), and the crowd
member is asked to drag and drop the images in one of the 4 right-hand side
bins (and also move images between bins). Crowd members can also decide to
leave images outside of any bin if they are unrelated to any of the other images,
indicating that the leftover images are dissimilar to the images within the bins.
This Ul was used in the experiments described below.

3.3.1  Crowd Experiments with Ground Truth

As a sanity check, we executed two small scale experiments, with a small crowd
(about 10-15 crowd members) and small sets of images, where the ground truth
is known. We experimented with two different computation tasks: top-k and
clustering. For each task, the crowd members answered queries of both the
baseline algorithm and our algorithm.

Top-k similar colors. The simplest set of images that we have used is a set of 300
solid colors, whose ground truth similarity can be measured, e.g., by embedding
the colors into 3-dimensional space according to their RGB or HSL values (we
have used RGB). The goal was to compute, for each color, the £-NN most similar
colors for varying values of k. We have compared the results of our algorithm to
the results of the baseline random and crowdcluster algorithms, using the same
number of queries overall in the three algorithms.
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Figure 3.3: A comparison of the accuracy of 10-NN images based on real
crowd input, using our algorithm and two baseline alternatives.

The results indicate that our algorithm identifies a larger percentage of the
nearest neighbors for a larger percent of the images. Figure 3.3 illustrates the
10-NN results for the three algorithms using 235 queries overall. Five phases were
used in our algorithm. For each algorithm, we show a histogram of intersection
between the true 10-NN (according to the ground truth) and the computed
10-NN. Note that crowdcluster slightly outperforms the random baseline, but
our algorithm generally identifies a larger fraction of the true 10-NN images,
“pushing” the histogram rightwards (red bars). Overall, our algorithm identifies
43.4%-50% more of the true nearest neighbors than the baseline alternatives,
which demonstrates the effectiveness of our progressive refinement approach.

Clustering fonts. In this experiment we have tested the ability of our algorithm to
cluster letter images into fonts, where the ground truth is the font to which the
letters belong. We have used 180 letters of 12 different fonts, and asked crowd
members to evaluate the similarity of letters with respect to their appearance.
The results have been used to compute 12 letter clusters, which should ideally
match exactly the 12 original fonts. Our algorithm has used 123 queries in total
over 5 refinement phases. For comparison, we have executed the same task
with 123 random queries.

Figure 3.4 illustrates the experimental results and in particular the progressive
refinement, via heatmaps that represent the cluster quality after each of the 5
phases. The results of the algorithm are almost perfect, with only 1.1% errors
(two letters). In comparison, the random query selection resulted in around
60% errors, and was outperformed by our algorithm already after the second
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(e)

Figure 3.4: Heatmaps displaying the accuracy of clustering for the font
dataset. Figures (a)-(e) illustrate the cluster quality after phases 1-5 of our
algorithm, respectively, and 123 queries in total. For comparison, Figure (f)
displays the cluster quality after 123 random queries.
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Figure 3.5: Two examples for clusters produced for the same letter “a” (on the
top left), based on the similarity metric of (a) our algorithm, and (b) random
baseline.

phase. Figure 3.5 displays an example cluster produced by our algorithm, and the
corresponding cluster produced by the random baseline. The latter cluster makes
sense in the broader context of the fonts, since it contains only handwriting fonts;
but the progressive refinement in our method allows distinguishing also between
the different handwriting fonts.

3.3.2 Crowd Experiments with Real-world datasets

Next, we have executed experiments with two real-world datasets where the
image similarity is highly semantic and therefore image features may not be
sufficient for estimating this similarity. The first dataset consists of 910 images of
movie posters downloaded from the movie pages in Wikipedia, where similarity

53



Dataset Number of images Success% A

Movie posters 910 87.2% 2.5
Chairs 1024 76.2% 3

Table 3.1: Real-world dataset results

is usually based on genre, style of the poster, characters, and so on. For this set
we have collected 547 query answers from about 60 crowd members.

The second dataset consists of 1024 chairs, of different types and angles from
the ShapeNet dataset [Chang et al., 2015]. Similarity in this dataset is based,
among others, on semantic features such as the usage of the chairs, the material
they are likely to be made of, and their assessed level of comfort. For this set we
have collected 559 query answers from about 60 crowd members.

As in many real-life scenarios, for these sets there is no ground truth or gold-
standard. Hence, we have manually examined the results of our algorithm by
sampling images with with their £-NN images, and comparing these results with
the results obtained by automatic means based on image features. For the movie
dataset, we used a color histogram with 64 bins (four bins for each of the RGB
channels), and an image thumbnail of four by four pixels, or a total of 16 RGB
values. The two descriptors were concatenated and treated as a single vector
for the distance calculation. For the chair dataset we have used features derived
from HoG descriptor [Dalal and Triggs, 2005].

For the manual examination, we used 50 random “seed” images sampled
from each of the datasets. For each seed image, we took its 10 NN images from
the dataset according to both our algorithm and the feature-based baseline. Each
of the images was labeled “very similar”, “similar”, or “unrelated” with respect to
its seed image. We counted the percent of seed images for which our algorithm
finds a greater number of similar images than the baseline, breaking ties by the
number of “very similar” images. The results are displayed in the Success %
column of Table 3.1. To quantify by how much we outperform the baseline, we
also computed the average difference between the number of similar images our
algorithm has discovered and the baseline. This difference is marked by the A

column in the table.

We illustrate a specific example of the observed difference in Figure 3.1.
The figure displays the 10-NN images (a) computed by our algorithm based
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Figure 3.6: Image retrieval results: nearest neighbors of the center image in a
collection of chairs, computed using (a) HoG descriptor, and (b) crowdsourced
queries. Smaller images mark farther neighbors. Less similar chairs are
highlighted.

on clustering queries and (b) according to color descriptors. The seed image
is displayed in the middle. In this case, the results of our semantic similarity
estimation retrieve movies of the same genre (animated adventure films). Within
that genre, most of the closest neighbors (four out of the top five) have the same
visual appearance (blue background) as the seed image. On the other hand, the
movies retrieved by using image descriptors have a similar visual appearance
in terms of color scheme and mood but are very different semantically. Note
that while we use rather simple image descriptors, even extremely sophisticated
descriptors would fail to associate posters of movies in the genre which has
different visual appearance with the seed image.

Figure 3.6 displays similar results for the chair dataset, but where the baseline
k-NN results (a) are computed according to HoG descriptor. The seed chair is
a school chair with curvy tubes supporting the back. The 10-NN chairs given
by our algorithm are all school chairs and many of them contain similar style
elements such as curvy tubes. In contrast, the chairs computed using the HoG
descriptor seem superficially similar (and also have the same orientation) yet
include office and dinning room chairs, and vary more in their style (the less
similar chairs are highlighted in the figure).

Figure 3.7 displays a few more selections of £-NN results for movie posters
and chairs. In each set the top left image is the seed and its 7 nearest neighbors
are presented from left to right. In many cases, the similarity between images can
be both semantic and visual. We have deliberately selected cases which present
a purely semantic relation which may be very hard or impossible to capture
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Figure 3.7: Image retrieval results: K -NNs of images from the movie posters
and chairs datasets.

using image descriptors. The semantic connection between movie posters vary
greatly, and spans movies from the same genre (a), posters that have dominant
typographic elements (b), posters of old movies (c), or the same expression of the
faces in the poster (d). The semantic connection between chairs may be similar
style elements (e), similar overall shape (f), similar function (g) or even chairs
with wheels (h). The k-NN results for all movie posters and chairs in the dataset
can be found on the project’s website.

3.3.3 Synthetic Experiments

We next provide further analysis of our algorithm via synthetic experimental
results. The experiments were conducted on datasets with available ground
truth, and with answers from a simulated crowd. The simulated answer for a
given query was computed using a k-means algorithm, which has split the 20
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images in the query into 4 clusters. Using synthetic answers allows us to test the
performance of our algorithm in a variety of scenarios.

Effect of locality. In the Introduction, we have stressed the importance of
using queries about local neighborhoods of images. To test this claim in isolation,
we have conducted a dedicated synthetic experiment, as follows. We have used a
set of 1000 colors sampled uniformly. Since the true similarities are known for
this image set, we could vary the locality of queries: for each query we started
from a seed image, then sampled the rest of the images from within a certain
distance from the seed image. We have then used the results of the queries to
compute the embedding as usual. We have observed an almost linear decrease
in the average precision of the computed 10-NN images as the distance between
images in each sample increases.

Co-occurrence of similar images.  One of the indications for the effectiveness
of the progressive refinement in our algorithm is the frequent co-occurrence
of similar images in the same query. Ideally, as the similarity metric that we
compute converges to the true one, similar images are more likely to appear in
a query together. Moreover, the distance between pairs that appeared together
in many queries is expected to be more accurate, since more data is available.
Since the budget of queries is limited, each pair that is queried comes at a cost
of another pair for which there will be less available information. We show that
our algorithm effectively favors pairs which are close to each other and therefore
need more accurate information.

Figure 3.8 illustrates this. We simulate a two dimensional embedding of
images, where each point represents an image in the dataset. The distance
between each pair of points (or images) is taken from the embedding, which
simulates ground truth similarity. The dataset contains 400 images, and we ran
400 simulated queries, once using our algorithm and once with random queries.
We then select an arbitrary image (marked in gold) and count how many times
each image in the dataset has co-occurred with it. We rank the images according
to their mutual queries count. The top 20 images (5% of the dataset) that were
queried together the most with the golden image are colored bright red. The
next 20 images (5%) are colored dark red. The rest of the images (360 or 90%) are
colored light blue.

Figure 3.8(a) shows that using random query selection, the images that co-
occurred the most with the golden image are randomly scattered, as expected. In
contrast, using our algorithm to select the queries (Figure 3.8(b)), the frequently
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Figure 3.8: Visualization of the images that appeared in the same query as
the image marked in gold. The images are ranked by the number of mutual
queries and the top 10% images are colored red. (a) Mutual queries after 400
random queries. (b) Mutual queries after 400 queries using our algorithm.

co-occurring images are centered around the golden image. Evidently, we do
not spend queries on pairs which are known to be far away, since their distance
from each other matters less and is expected to be less accurate. This allows
our algorithm to better estimate the relative local similarities, and use them to
estimate the global similarities.
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Figure 3.9: Number of correct 10-NN images as a function of number of
queries (left) and number of phases (center), and versus a triplet-based
algorithm (right).

Varying the algorithm parameters. We next execute our algorithm while
varying the value of two parameters: the total number of queries and the number
of phases, to demonstrate the impact of these parameters on the query results.
Figure 3.9(right) illustrates the effect of varying the total number of queries, for a
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synthetic 1000 random color dataset, and 5 phases of our algorithm. As expected,
there is a positive correlation between the number of queries we use and the
quality of the results, measured by the size of the intersection between the true
10-NN images and the 10-NN images that we compute. This means that with a
greater budget we can improve the estimation of the similarity metric.

Figure 3.9(center) illustrates the impact of number of phases on the quality
of the results (using the same image set as above, the same quality metric,
and 1200 queries overall). The number of phases ranges from 0 (which is
equivalent to random query selection) to 5. Note that increasing the number
of phases increases the result quality, since recomputing the embedding more
frequently allows creating better queries. However, the margin by which the
quality improves decreases, so the difference between 4 and 5 phases is small.

Queries versus triplets. A common solution for collecting image comparisons
from the crowd is based on triplet queries of the form “Is image A more similar
to image B or to image C?”. We have already noted that one advantage of our
approach over the triplet-based one is that clustering queries provide context
for comparison. In this synthetic experiment we ignore the context, and focus
on the number of questions needed for each type of solution. As shown in
Figure 3.9(right), our algorithm’s performance using 1200 queries is comparable
to the triplet-based algorithm’s performance using 84000 queries.

3.4 Conclusion

In this chapter, we presented an efficient approach for estimating the similarity
of images based solely on the input of the crowd. Our system progressively
refines the images posed to the crowd, in order to obtain similarity comparisons
between images in the same neighborhood, allowing faster convergence to an
accurate similarity metric. In our experimental study we have used a particularly
small number of queries, and have shown that even on this basis we can obtain a
fair estimate of the semantic similarity. Our method can also be used to estimate
the similarity of any collection of objects that can be represented by images, such
as 3D shapes.

Limitations and future work. This work focuses on input from the crowd
alone. However, it is often the case that some clues for the semantic similarity
of images are available in the form of image features or textual context. Even if
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these clues do not account for the full range of semantic connections, it would be
interesting to examine how to leverage them in conjunction with our algorithm.
This direction may benefit the method’s scalability, since in very large image
sets, the affordable number of queries might not even be linear in the size of
the set. A straightforward approach for integrating semantic clues would use
our algorithm to learn similarities for a small fragment of the image set, and
then apply machine learning techniques to complete the rest, using features
based on semantic clues (in the spirit of [Lun et al., 2015; Saleh et al., 2015;
Yi et al., 2012]). A more interesting solution may further combine the clues
within the query generation phases. This is non-trivial, since the usage of other
estimates can potentially cause semantically similar images to be overlooked.

Another challenging direction for future work includes a more elaborate
treatment of the uncertainty stemming from the crowd. Crowd members often
disagree on the similarity of images, or provide inconsistent answers. So far,
we have assumed that the embedding we perform mitigates the impact of such
inconsistencies. However, we may want to explicitly account for inconsistencies,
by a probabilistic modeling of the crowd’s behavior, e.g., as done in [Gomes
et al., 2011] for the purpose of clustering. It would thus be interesting to
develop probabilistic models dedicated for the learning of a similarity metric.
In particular, this method should support efficient computations, due to the
interactive nature of our algorithm.
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4 SHED: Shape Edit Distance

One of the primary goals of shape analysis is understanding what type of
object is represented by the shape. In Section 1.1 We referred to this as the
basic semantic similarity between shapes. Naturally, the development and
evaluation of similarity measures in the 3D shapes domain is typically geared
towards classification of shapes into broad sets of categories [Tangelder and
Veltkamp, 2008]. Detection of inter-class differences has been emphasized over
quantification of intra-class differences, and little attention has been given to
estimating the similarity between shapes that belong to the same class. For
example, in the context of shape retrieval, the success of a method is often
evaluated based solely on the number of shapes that are retrieved from the same
class. The question whether the retrieved shapes are the most similar within
the class remains unanswered. However, with the large repositories available
today, organization and exploration of shapes from the same class have become
as important as categorizing shapes into different classes. These tasks require an
estimation of fine-grained shape similarities, including similarities in function,
style, and the part composition of a shape.

We aim to improve on existing methods by identifying both inter-class and
intra-class similarities. Our premise is that the semantic similarity humans
perceive between shapes is very much related to the part composition of each
shape and the similarity between each part and its counterpart. Thus, we
introduce shape edit distance to measure similarities between shapes. Intuitively,
the shape edit distance (SHED) measures the amount of effort needed to
transform one shape into the other, in terms of rearranging the parts of one
shape so that they closely match the parts of the other shape, or by adding and
deleting parts (Figure 4.1). SHED takes into account both the similarity of shape
structure and the similarity of individual shape parts. We follow a recent trend of
representing shapes as graphs of parts [Kalogerakis et al., 2012; Laga et al., 2013;
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Figure 4.1: Shape edit distance: the distance between shapes is measured
by edit operations that transform the parts of one shape into corresponding
parts in the other shape.

Mitra et al., 2013; Zheng et al., 2014]; however, we use the matching between
graphs to extract a global measure of shape similarity.

The strength of the shape edit distance is its tolerance to part re-arrangements,
additions and deletions. Thus, SHED is flexible in quantifying the similarity
between shapes that have partial similarities, articulated parts or repositioned
parts. This leads to a similarity measure that accurately captures finer shape
differences, enabling a finer-grade organization of shapes. In contrast, other
traditional similarity measures are oblivious to the shape structure: for example,
the light field descriptor, popular in shape retrieval [Chen et al., 2003], is
highly sensitive to any type of shape difference or deformation, while in bag-
of-feature approaches, the similarity is invariant to the arrangement of shape
components [Bronstein et al., 2011; Litman et al., 2014].

We do not explicitly find a sequence of editing operations that transforms
one shape into the other. Instead, we indirectly estimate the edit distance by
using a part correspondence to extract a measure of similarity. First, shapes are
segmented into parts, and an approximate correspondence is computed between
the parts of each shape. We do not enforce a strict one-to-one correspondence,
since a part in one shape may be duplicated or missing from the second shape.
Instead, we apply constraints to the matching by associating additional costs
when parts change their context. Then, each match between two parts is
associated with a transformation cost: a weighted sum of terms that relate to
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the differences in part geometry, scaling and position of the parts in the shape.
Finally, the edit distance of the shape is the aggregated cost of transforming
all parts in the correspondence. We use supervised learning for automatic
computation of the weights from examples, as opposed to manual tuning, which
could be unintuitive.

We demonstrate the advantage of using SHED with a series of experiments.
First, we evaluate SHED in a quantitative manner by constructing categorization
trees that can be used for shape exploration. We compare these trees to the
trees generated using other state-of-the-art similarity measures, as well as
ground truth trees created by expert users. In addition, we cluster shapes into
a predefined number of clusters and compare the results to clusters generated
from the ground truth trees. These evaluations demonstrate that the similarity
estimated by SHED is preferable to other distance measures and leads to a more
intuitive shape organization in the intra-class context. In the inter-class context,
we perform shape retrieval according to SHED and show that it yields comparable
results to state-of-the-art similarity measures. Finally, in settings where ground
truth data is not well defined, we show qualitative results of nearest neighbors
queries and embeddings of sets of shapes.

4.1 Related Work

This work comprises ideas such as shape comparison, graph edit distances and
part-based matching, which we discuss as follows.

Shape comparison, retrieval and exploration. There has been much work on
the development of shape similarity measures that can be used for retrieval,
exploration, or any type of shape comparison [Tangelder and Veltkamp, 2008].
In terms of shape retrieval and categorization, state-of-the-art approaches
that currently give the best performance are a combination of the light field
descriptor with bag-of-features and metric learning approaches [Li et al., 2012al.
For intra-class organization, Xu et al. [Xu et al., 2010] cluster a set of shapes
into different groups by factoring out the effect of non-homogeneous part
scaling and then establishing a correspondence between shape parts. Huang
et al. [Huang et al., 2013al present an approach for fine-grained labeling of
shape collections. Similarly to our work, their goal is to learn a distance
metric within a class of shapes to capture finer shape differences. However,
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their method follows a different paradigm than our work: the shapes are
globally aligned with an affine transformation followed by local deformations,
and the metric is learned on the aligned shapes. Individual parts obtained
from segmentation and their transformation are not considered as in our
approach. In the more restricted context of isometric matching, there has
been much activity in deriving signatures for shape comparison, such as
GPS embedding [Rustamov, 2007] or heat kernel signature [Ovsjanikov et al.,
2010]. Kurtek et al. [Kurtek et al., 2013] define a shape space and metric that
capture more comprehensive deformations than nearly isometric, but require
surfaces of the same topology. Bag-of-feature approaches [Bronstein et al., 2011;
Litman et al., 2014] are considered state of the art for retrieval of non-rigid
isometric shapes. The goal of these methods is to retrieve shapes with similar
topology from a collection of shapes in the same class, such as human models in
different poses. Hence, these methods are not suitable for comparison of shapes
with different part composition, structure or topology, which is the focus of our
work.

Shape exploration necessitates not only the estimation of the similarity of
shapes to a query shape, but also a way of organizing the shapes. Thus, different
strategies have been proposed for exploration, such as the use of a deformable
template [Ovsjanikov et al., 2011], region selection [Kim et al., 2012], dynamically
adapted views of close neighborhoods [Kleiman et al., 2013, or parameterization
of the template space [Averkiou et al., 2014]. In the work of Huang et al. [Huang
et al., 2013bl, the goal is to obtain a qualitative organization of a collection of
shapes, since an organization based on a single similarity measure is not always
meaningful when comparing both similar and dissimilar shapes. Likewise, our
goal is to properly capture both inter- and intra-class differences. However,
instead of aggregating the scores of several similarity measures, we develop an
edit distance to estimate the shape similarity.

Graphs of parts for shape analysis. The idea of describing 2D shapes and
images as graphs of parts has appeared prominently in the field of computer
vision. A few representative works include matching shapes according to shock
graphs [Sebastian et al., 2004] and skeletons [Sundar et al., 2003], and matching
images according to graphs that represent their segmentations [Harchaoui
and Bach, 2007]. In the graphics literature, comparing shapes by matching
graphs was utilized for consistent joint segmentation [Huang et al., 2011] and
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co-segmentation [Sidi et al, 2011] of a set of shapes. A group of works has
estimated the similarity between shapes by matching Reeb graphs, which are
constructed from functions defined on manifold shapes [Hilaga et al., 2001;
Barra and Biasotti, 2013]. Other works have explicitly segmented shapes and
created graphs of segments, with applications in shape synthesis [Kalogerakis
et al., 2012] and semantic correspondence [Laga et al., 2013]. These works are
directly related to the idea of modeling shapes by combining parts from different
models [Funkhouser et al., 2004]. Templates or part arrangements have also
been learned from collections, although these do not explicitly represent the
connectivity between parts [Kim et al., 2013; Zheng et al., 2014]. The fundamental
difference of our approach to these representative works is that we use the
matching between two graphs of parts as input to estimate the overall similarity
between two shapes; the correspondence between the graphs is the base for a
distance measure that enables us to quantify finer shape differences.

Graph matching and integer programming. The graph matching problem is
commonly posed as an integer quadratic programming problem, which is NP-
hard. There is a large body of work regarding the relaxation of such problems
to a tractable convex quadratic programming optimization. Two prominent
works in this area are the spectral correspondence presented by Leordeanu
and Hebert [Leordeanu and Hebert, 2005] and a relaxation of the quadratic
optimization by using bounding linear integer optimizations, proposed by Berg
et al. [Berg et al., 2005]. These relaxations often yield good results in practice
in the one-to-one matching scenario. However, performing gradient descent
from a continuous relaxation of the integer problem has been shown to yield
non-optimal permutations in most cases [Lyzinski ef al., 2015]. Indeed, the
above methods perform poorly in our one-to-many scenario where a part can
correspond to several parts in the other shape. Recently, Kezurer et al. [Kezurer
et al., 2015] suggested lifting the problem to a higher dimension, followed by
a linear semi-definite relaxation. However, their method is computationally
expensive and does not extend easily to one-to-many scenarios. Bommes et
al. [Bommes et al., 2012] perform iterative relaxation of the problem where in
each iteration a single integer constraint is added to the optimization. We follow
a similar approach, but instead of adding hard constraints in each step, we adjust
the objective function to give precedence to solutions which are compatible with
previously selected matches.
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Graph edit distance. The graph edit distance has been used to find a correspon-
dence between graphs in several areas of visual computing, such as computer
vision and medical imaging [Gao et al., 2010]. The idea of an edit distance
is attractive because it poses the problem of matching two graphs as finding
a sequence of operations that transforms one graph into the other. The edit
distance can consider not only the matching of similar nodes and edges, but
also their addition, duplication and deletion. However, finding the minimal
edit distance is NP-hard, so different heuristics have been proposed to compute
it. A common technique is to use a graph kernel that estimates the similarity
between two nodes according to their attributes and their neighborhoods in the
graphs [Neuhaus and Bunke, 2007]. Our shape edit distance does not require an
explicit sequence of operations, but an aggregation of all the changes necessary
to transform one shape into the other.

In the context of computer graphics, Fisher et al. [Fisher et al., 2011] used
graph kernels to estimate the similarity between graphs representing scenes
composed of multiple objects. In addition, Denning and Pellacini [Denning and
Pellacini, 2013] proposed a technique based on the edit distance to quantify
localized differences between two models. Their method is better suited for
comparing models generated by editing the same source shape. On the other
hand, our work is aimed at computing the similarity between any pair of shapes.
We derive the edit distance directly from a correspondence between graph nodes,
as opposed to the methods above based on graph kernels. In addition, we do
not require a one-to-one correspondence between the shape parts, but find a
one-to-many correspondence and quantify the edit distance without explicitly
searching for a sequence of editing operations. We explain the details in the next
section.

4.2 Shape Edit Distance

Input, output, and shape representation. The edit distance measure takes
as input two shapes and returns a real number representing the distance
(dissimilarity) between the shapes. The distance is lower for shapes that have
similar part geometry and structure, taking into account part rearrangements
and partial correspondence, and higher for shapes that differ in these aspects.

We represent each shape as a collection of parts and connections among these
parts, i.e., a graph of parts. Our method is generic and can take as input different
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Figure 4.2: Difference between the semantic segmentation of two shapes in
(a) and (b), and their nearly convex decomposition in (c) and (d). Note how,
in (a) and (b), the bounding boxes of the parts corresponding to the candle
supports have considerably different sizes. In (c) and (d), both supports are
composed of small nearly convex segments with similar sizes.

shape representations, although in this work we represent the shapes as triangle
meshes. The first step in our method is the partitioning of input meshes into parts.
One possibility is to use semantic segmentation techniques [Shapira et al., 2008;
Shamir, 2008]. However, semantic parts do not have a clear definition and can
greatly vary among different shapes. Moreover, a semantic part can have a
complex geometry, making its comparison to other semantic parts non-trivial
(Figure 4.2). In a sense, the problem of comparing two complex segments can
be as involved as that of comparing two shapes. Instead, we segment the shapes
into simpler primitives that can be more easily analyzed. For this task, we use
the recent weakly-convex decomposition technique of van Kaick et al. [van Kaick
et al., 20141, which partitions the input shapes into nearly convex parts. Nearly
convex parts are easier to analyze, since they have a simpler geometry and can be
approximated well by their bounding boxes (Figure 4.2). In addition, the convex
decomposition of a shape is robust to small changes in the shape.

Our method also supports using a manual segmentation of the shapes
into parts, if such data is available. However, the results in this paper were
produced using the automatic weakly-convex decomposition to provide a
complete solution. The part graph is defined by creating a node for each nearly
convex part of the shape, and an edge between adjacent parts in the shape
segmentation.
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Part similarities and matching. Given two shapes represented as graphs of
parts, our goal is to find a set of editing operations that transform the parts of one
shape into the parts of the other. Possible editing operations include deforming,
displacing, duplicating, adding, or removing parts. Then, a cost is associated with
each editing operation based on the extent of the transformation. The editing
costs are aggregated to produce the final shape edit distance between the two
input shapes.

In SHED, we derive the set of editing operations from a mapping between the
parts, since we can associate each pairwise match with a single operation. This
mapping depends on the similarity of parts to each other as well as their context
and the structure of the shape. For example, two parts with different geometry
can be matched if their neighborhood is similar. On the other hand, two parts
in different locations in the shape can be matched if their geometry is similar.
Thus, the mapping of each part depends not only on the part properties, but on
the mapping of all other parts of the shape. This makes the problem of finding
the correct matching intractable, so an approximate solution is necessary. To
this end, we formulate our objective in a quadratic form by constructing unary
terms for each match between two parts, and binary terms for pairs of matches,
representing only pairwise dependencies between matches. Then, we develop
a novel adaptive spectral matching technique to find an approximate solution
for this formulation. Our technique uses similar principles as the method of
Leordeanu and Hebert [Leordeanu and Hebert, 2005], but instead of solving the
optimization once and applying constraints in a greedy manner, we iteratively
improve the optimization by incorporating the constraints that arise in previous
steps. We explain the computation of the matching in detail in Section 4.3.

Given the mapping between two shapes, a cost can be computed for each
edit operation. The costs reflect the following aspects of shape similarity:

¢ Similarity of the geometry of the parts. For example, morphing a cylindri-
cal part into another cylindrical part is less costly than morphing a cube
into a cylinder, as the former pair is geometrically more similar than the
latter.

¢ Similarity of the structure of the part graphs. We allow nodes to move in
the part graph, with a cost proportional to the magnitude of the structural
change. Duplicated parts and additional parts also incur additional costs
as the structure of the shape changes.
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¢ Scaling of the parts. The scale of each part plays a critical role in the global
similarity of a shape; different shapes can have similar graphs of parts
where each part is scaled differently relative to its neighborhood. Thus, we
introduce scale-specific terms in our formulation.

To produce a scalar similarity measure between two shapes, the terms described
above need to be weighted and aggregated. A question arises of how to determine
the weights for each term. Shape similarity is a subjective measure, so different
users might have different views on which shapes are more similar, which implies
that different weights are necessary. Moreover, while a set of manually selected
weights can provide a reasonable similarity measure for all shapes, it is clearly
beneficial to fine-tune the weights to better reflect the variation in a specific set.
Therefore, we employ a weight learning scheme that finds the optimal weights
to match a set of given distances. We elaborate on the details of the distance
formulation and the weight learning scheme in Section 4.4.

In Figure 4.3, we show the effect of considering these different factors in the
edit distance. We compare a 2D embedding created with multi-dimensional
scaling, according to the similarities given by SHED and the light field descriptor
(LFD). For SHED, we show the results of using three configurations of weights:
equal weights for each term (b), weights learned from user input giving high
priority to the scaling of parts (c), and weights learned from user input giving
high priority to the structural difference between parts (d). The example set
contains vases ranging from zero to four handles, some with a slightly thinner
body and some with a bigger base. The consistency of distances provided by
SHED yields an intuitive embedding that is true to the observed properties of
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Figure 4.3: Embeddings obtained with multi-dimensional scaling on a small
set of vases, based on the following distance measures: (a) LFD, (b) SHED
with default weights, (¢) SHED with high weight for scaling changes, and (d)
SHED with high weight for structural changes.
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the shapes, namely the number of handles and size of the parts. On the other
hand, the embedding generated by LFD groups shapes according to their overall
appearance, and does not take into account the finer details of the shapes. Thus,
LFED is not able to distinguish well between the vases that differ by the number of
handles, as their projected views are very similar.

4.3 Part Matching

The correspondence between two shapes can be represented as a list of matches
or pairings between two parts, one from each shape. The mapping does not
have to be one-to-one; a part in one shape can be duplicated and have several
matches in the other shape. However, we constrain the mappings so that if a part
is duplicated, then its matching parts in the other shape are not duplicated, to
ensure consistency in the editing operations. In other words, for each edge in the
matching graph, the degree of at least one of its vertices is one. The dependencies
between different possible matches are complex and can involve more than two
matches. We approximate such dependencies by using pairwise constraints only,
so the problem becomes tractable. We formulate the correspondence problem
using unary terms that depend on a single match, and binary terms involving a
pair of matches. Unary terms represent the likelihood of a match, or the affinity
between a part in one shape and a part in the other shape. Binary terms represent
the compatibility of two matches, i.e. the likelihood that both matches will be a
part of the same mapping.

Unary term. The unary term represents the amount of effort necessary to
morph the geometry of a part into another part. One of the advantages of
segmenting the shape into nearly convex parts is the simplicity of each part,
which allows us to use efficient descriptors to effectively distinguish between part
geometries. We use the shape distribution signatures to represent the geometry
of the parts [Osada et al, 2002]. Specifically, we use the D1 descriptor (also
called shell histogram [Ankerst et al., 1999]), which computes a histogram of the
distance between uniformly sampled points on the surface and the center of mass
of the part, and the D2 descriptor, which computes a histogram of the distance
between pairs of uniformly sampled points on the surface. These descriptors
are relatively simple and fast to compute, yet they are able to distinguish well
between parts with simple geometry such as nearly convex parts. The D1 and D2
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histograms are computed for each part, and compared using x? distance, which
is defined as

K

where H;, H; are the input histograms, and K is the number of bins in each
histogram. The geometry cost is thus

C(Z,]) =«- dXQ (Dlz, Dlj) + (1 — Oz) . dXQ(Din DQJ) (4.2)

where D1; and D2; are respectively the D1 and D2 histograms for part i, and «
controls the balance between the D1 and D2 descriptors. In our implementation
a = 0.5 (equal weights). The cost is transformed into an affinity using the natural
exponent:

U(Z7J) = exp(—C(é,j)/J), (4.3)

where o is chosen such that the affinity values have a wide spread between 0 and
1. In our implementation o = 0.5.

Binary term. The binary term represents the compatibility of one match (i, j)
to another match (k, 7). When two shapes are similar, adjacent parts in one shape
are expected to be mapped to adjacent parts in the other shape. In addition, the
scaling factor of all matches is expected to be similar, since a match that has
significantly different scale than other matches in the mapping is less likely to be
correct. Therefore, we define a graph distance cost and a scaling factor cost for
each possible match.

The graph distance is defined for each pair of parts on the same shape as the
length of the shortest path between these parts in the shape graph. We use the
ratio between the graph distances of each match to measure the compatibility
between matches:

max(g(i, k), g(4,1))
min(g(iv k)a g<j7 l))

G(i g, k1) = -1, (4.4)
where ¢(i, k) is the graph distance between parts i and k£ on the same shape.
This term is zero when both pairs of parts have the same graph distance in their
respective shape, and is highest when one pair of parts is adjacent and the other
is not. Note that the cost is low when the graph distances between both pairs are
high, so adjacent parts have more weight in the total cost.
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We define the scaling factor of each match as the ratio between the volumes
VOL(i)
VOL(j)
cost, we use the ratio between the scaling factors of two matches as the scaling

of the source and target part: s(i,j) = . Similarly to the graph distance

factor cost:
max(s(i,7),s(k, 1))

min(s(,7), s(k,1))

S(i,7, k1) = -1 (4.5)
The binary term is defined as the affinity between two matches, which is
computed from the above costs as follows:

B(i,j,k,1) = B -exp(—(G(i, 5, k, 1) + S(i, 5, k,1))/2). (4.6)

The parameter  controls the weight of the binary term compared to the unary
term. If 5 is large, the structure of the shape takes precedence over the geometry
of parts, and if /5 is small, the geometry of the parts is more important than the
shape structure. If 5 = 0, the only consideration is the part geometry and the
correspondence resembles a bag-of-features approach. In our implementation,
B =0.3.

Matching technique. There are several matching techniques in the litera-
ture that find an approximate solution to pairwise-constrained correspon-
dence problems, such as the spectral matching technique of Leordeanu and
Hebert [Leordeanu and Hebert, 2005], or the integer quadratic programming
relaxation proposed by Berg et al. [Berg et al., 2005]. The main idea of these
methods is that the pairwise constraints can be presented in a quadratic form
by constructing a matrix M of n - m rows and n - m columns, where n and m are
the numbers of parts in the first and second shape, respectively. The diagonal
of M contains the values of the unary term U(i, j), and the values outside of
the diagonal of M are the binary terms B(i, j, k, [). The best correspondence is
then represented by the binary vector 2 that maximizes the product 7 Mz and
does not break additional constraints, such as the requirement for one-to-one
mapping, etc. This poses an integer quadratic programming problem, which is
NP-hard, therefore different approximation methods are suggested in the above
methods.

Leordeanu and Hebert [Leordeanu and Hebert, 2005] propose to first solve
an un-constrained assignment problem in the continuous setting, where z is
allowed to have values in the range [0, 1]. This can be solved easily by setting
x to the normalized principal eigenvector of M. Then, the result vector z is
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binarized in a greedy manner, taking into consideration additional constraints in
the process. In each step, the match with the highest value in z is marked, and
the values of the match and all conflicting matches in x are reduced to zero. This
process continues until all values in z are zeros, and the final mapping is returned
as the collection of marked matches. Since the constraints are not incorporated
into the cost matrix, the greedy binarization process is less successful when
several conflicting mappings are possible. While strictly conflicting matches are
filtered out, matches which are compatible with those conflicting matches might
still be selected since their score is computed before the conflicting matches
are discarded. This effect is most prominent in less constrained scenarios such
as ours. For example, we allow duplications of parts, but a matching in which
almost all parts are matched to the same part is valid but not desirable in most
cases.

To address these issues, we introduce adaptive spectral matching, which
incorporates the desired constraints directly into the objective function, leading
to a more consistent global solution to the correspondence problem. We
iteratively adjust the affinity matrix M according to the constraints and re-run
the eigenvector decomposition. In this way, not only conflicting matches are
excluded from the solution, but matches that are compatible with conflicting
matches are also less likely to be selected in subsequent steps. The iterative
method starts by setting x to the principal eigenvector of M, and then performs
the following steps:

e Mark the match with the highest value in x.
e Set the affinity of the match in M to 1.

¢ Incorporate constraints into M, by setting the affinities of each conflicting
match or pair of matches to zero. In our case, once a match (i, j) is selected,
the compatibility of matches that contain part i to matches that contain
part j becomes zero (i.e. the binary scores B(i,j',i',j) = 0 for each ¢
and j'), since having both of these matches would mean that there is a
many-to-many relation between parts i and j.

e Set x to the principal eigenvector of the adjusted M, and ignore all matches
that are conflicting or were already selected.

e Repeat until there are no more valid matches.
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Figure 4.4: Matching between shapes. In each set, the source shape (left) is
matched with three nearest neighbors according to SHED (top), and three
additional shapes which are not neighbors (bottom). Multiple target parts
that match the same part in the source shape are marked with the same
color (see red line, top insets in (a)). A single target part that is matched with
multiple parts in the source shape is marked with mixed colors (see orange
and cyan lines, bottom insets in (a)). Note that minor differences in the
segmentation do not affect the matching or nearest neighbors computation
(a, d, f). On the other hand, significant differences in the segmentation may
lead to incorrect matching (b, e).

A few examples of matchings between segmented shapes using the above
algorithm are shown in Figure 4.4. In each sub-figure, the parts are color coded
according to their matching to the shape on the left. Parts that are matched to
the same part in the source shape have the same color. Parts that are matched
to more than one part in the source shape have the colors of all matching parts
mixed in a random pattern. For example, in the bottom left of (a), indicated
by cyan and orange lines, both the top and the base of the source vase were
matched to the top of the target vase, since it has no base. Similarly, for vases
with one handle, both handles of the source vase are matched to the parts of a
single handle.

Minor differences in the segmentation of similar shapes do not typically cause
significant changes in the matching. For example, as can be seen by the red line
in (a), two of the nearest neighbors of the shape have an extra part in the handle.
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The extra part is matched to a similar part, and the rest of the matching remains
correct. Since the duplicated part is small, the similarity between these shapes
according to SHED remains high. Similarly, most of the shapes on the top rows
of (c), (d) and (f) have minor differences in their segmentation, yet they are
considered similar by SHED. On the other hand, significant differences in the
segmentation may lead to incorrect matchings, as can be seen in (b) and (e). The
vase in (b) is only segmented into four parts while similar vases are segmented
into seven parts. Thus the matching between these vases is weak, and matched
parts are not similar in their geometry, scale and structure. This causes SHED to
assign low similarity score to similar shapes.

4.4 Distance Formulation

The matching algorithm output is a list of matches (i, j) € M. The transfor-
mation of each part in the shape is directly defined by the matches it belongs
to. Each transformation is associated with a cost which is determined by the
magnitude of change and the relative volume of parts in the shape. Below we
describe the four types of transformations and how their associated costs are
computed.

Change of geometry. For each match (i,7) in the mapping, the cost of de-
forming the geometry of one part into the other is computed using the same
formula for C(7, j) in Equation 4.2. Each term is weighted according to the
volume of the parts associated with it. For this, we define a match volume
m(i,7) = VOL(i) + VOL(j), and normalize it using the sum of volumes of all
matches 7(i, j) = m(i, )/ > jesm m(i,5). The geometry cost C(4, ) is then
weighted by the normalized match volumes m(i, j).

Change of scale. Since the global scale of two shapes can be different, the
change of scale between parts must be measured compared to the change of
scale in other matches in the mapping. Thus, the scaling costs are computed for
each pair of matches (i, j) and (k, ). The scale term is similar to the formula in
Equation 4.5 and measures the difference between the change of scale in the two

matches:
max(s(i, j), s(k,1))

Cs(i’j’ k, l) - min(s(i,j), S(ka l))

—1. 4.7)
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Note that Cs; = 0 when the scale change of the two matches is exactly the same,
and Cs = 1 when the magnitude of change in one match is exactly twice than the
other match. The scale costs are weighted by m.(i, j) - 7 (k, 1), such that the total
weights of all the pairs which contain match (i, 7) is (i, j).

Change of position. To detect a part that changed position, it must be com-
pared with its environment, so the position costs are also computed for each pair
of matches (4, j) and (k,!). We compare the graph distance of parts i and k in
the first shape ¢(i, k) and the graph distance of parts j and [ in the second shape
9(j,1):

Cyli, . b, 1) = abs(g(i, k) — g(j.1)). (4.8)

Note that if a part is duplicated, we compare the adjacency with the most similar
instance, such that if several parts are duplicated together as a group they will
only be compared to parts in the same group. The position costs are also weighted
by m(i, 7) - m(k,1).

Duplication costs. When a part is duplicated, there are two or more matches
with the same part. Each of the matches incurs the above costs if applicable.
In addition, we aggregate the volume of the shape that is being duplicated, by
summing the volume of all parts in all matches and subtracting the total volume
of the shapes. The remainder is the volume of all parts (in both shapes) that
appear twice or more in the matches. The duplication cost is normalized by the
total volume of the matches, so it represents the percent of matches that have
duplicated parts. It is formulated as:
’ ]%M m(i,j) — %}S VOL(7) — j; VOL(j)
= > (i) | o

(i,5)eM

where S and 7 are the shapes being compared. Note that we do not define a
cost for parts that were added, since adding a new part can be thought of as
duplicating the most similar part and morphing it to the desired shape.
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Aggregation and weight learning. The shape edit distance is formulated as a
weighted sum of the above costs:

SHED(S,T) =w,- > m(i,j) - C(i, )

(4,7)EM
+w;g - > m(i, j) - m(k,l) - Cs(, 7, k,1)
(B.)eEM, (k,1)eEM (4.10)

(i,5)eM, (k1) eM

+’wd . Cd7

where wy, ws, w, and wy are the respective weights of the geometry term, scale
term, position term and duplication term. Since semantic similarity between
shapes is a subjective matter, it makes sense to learn the values of these weights
from user input. However, similarity or semantic distance between two shapes
cannot be quantified numerically by the user. Instead, we ask users to indirectly
provide the semantic similarity of a set of shapes by generating categorization
trees, which group together similar shapes in several levels of hierarchy. For more
details see Section 4.5. To learn the weights from the categorization trees, we
extract trios of shapes, where in each trio two shapes are similar (i.e. they belong
to the same subtree of depth two), and the third shape is semantically far (i.e.
it belongs to a different subtree). Each trio of shapes defines a relative relation
of the form “shape A is closer to shape B than to shape C”. Each categorization
tree provides many thousands of trios, from which we randomly select 1000
trios as a training set. To learn the weights from such relations, we employ
a weight learning scheme suggested by [Schultz and Joachims, 2004]. Each
relation between shapes A, B, and C, is transformed into a constraint of the form:
D(A,C)—D(A, B) > 1where D(A, B) is the weighted distance between shapes A
and B. Then, a convex quadratic optimization is formulated and solved similarly
to a support vector machine. For more details see [Schultz and Joachims, 2004].

Using this method, we can fine tune the weights for a specific set of shapes
such as lamps or vases. For example, the scaling differences between parts affects
the semantic distance between lamps more than it affects the semantic distance
between vases. Alternatively, we can use trios from categorization trees of several
sets of shapes to learn a global set of weights. Using this method, we propose a
set of default weights (see Table 4.1) that would approximate well the semantic
similarity of any set of shapes. Note that these weights also reflect the relations
between the different units in which the different costs are measured.
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SetName  Default Lamps Candles Vases Airplanes

Geometry 0.4795 0.4376 0.2779 0.4788  0.4285
Scale 0.1258 0.1921 0.1794 0.0256 0.0206
Position 0.0034 0.1216 0.1203 0.1697  0.0047
Duplication 0.3914 0.2486 0.4224 0.5396 0.5462

Table 4.1: Learned weights for different sets of shapes. Each column is
normalized such that its sum is one.

4.5 Evaluation

The distance between two shapes cannot be directly measured or estimated
numerically by a human observer, hence evaluating the accuracy of a similarity
measure is somewhat challenging. Still, we are able to compare SHED with state-
of-the-art distance measures, namely the light field descriptor (LFD) [Chen et
al., 2003] and the spherical harmonic descriptor (SPH) [Kazhdan et al., 2003],
and demonstrate its success in various applications. We evaluate the results
quantitatively using ground truth data for shape exploration and clustering, and
qualitatively for nearest neighbors queries and embedding, where ground truth
data is not well defined.

Datasets. We evaluate SHED using three sets of shapes from the COSEG
dataset [Wang et al., 2012] and three sets from PSB [Chen et al., 2009]. In addition,
we collected a set of airplanes from Google Warehouse and other online resources.
The airplanes and COSEG datasets were enriched by introducing finer intra-class
variation. The enriched sets include 100 lamps, 80 vases, 70 airplanes, and 40
candelabra, and contain shapes that vary in their part composition, geometry,
and articulation. The PSB sets include 20 humans, 20 hands and 20 Teddy bears,
which vary mostly in articulation.

Categorization trees.  We present an application where categorization trees
of shapes are automatically generated for each enriched set. The resulting trees
hierarchically organize the shapes in a set and can be used for exploration. The
trees are created using Self-Tuning Spectral Clustering [Zelnik-Manor and Perona,
2004], which is a non-parametric clustering method, i.e., the number of clusters
in each set is selected automatically. We used this method recursively to build a
categorization tree for each distance measure (SHED, LFD, and SPH). An example
of the generated trees on a subset of shapes is presented in Figure 4.5, where the
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Figure 4.5: Categorization trees automatically generated for a set of vases
according to SHED, LFD and SPH. The vases are colored according to their
shape style. Note that the organization of shapes is more consistent when
using SHED (3 categorization errors) than when using LFD or SPH (6
categorization errors each), as seen by the number of shapes with a different
color than their lowest level neighbors in the tree.

Lamps Candles Vases Planes

N

—SHED —SHED
—LFD —LFD

—SHED

_ ol —LFD
£ SPH

8 ---GT

EA5f T

g

»

o

Degree of separation

o
Degree of separation

o
o

4 5 4 5 4 5
Number of levels Number of levels Number of levels

Figure 4.6: Comparison of automatically generated trees to ground truth
trees, according to the average difference in the degree of separation.

shapes are colored according to their shape style. Note that the tree generated
using SHED has fewer categorization errors. The generated trees for the full sets
can be found in the supplementary material.

To evaluate the quality of the generated trees in a quantitative manner, we use
multiple ground truth categorization trees. Since creating a single categorization
tree of a set may be subjective, we asked three expert users to independently
create a tree for each enriched set. All of the ground truth trees can be found
in the supplementary material. The ground truth trees are compared to the
generated trees by averaging the difference in the degree of separation (DoS)
between each pair of shapes in the trees. The DoS is defined as the length of
the path between two shapes in the tree [Huang et al., 2013b]. The average
difference of DoS measures whether shapes are organized in a similar manner
in two trees, without being influenced by the specific structure of each tree. To
compare the trees at different levels of granularity, we truncate the trees up to
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Figure 4.7: Comparison of clustering results according to SHED, LFD, and
SPH on a set of lamps. The shapes are clustered into six groups and colored
according to their ground-truth clusters.
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Figure 4.8: Comparison of automatically generated clusterings to ground
truth, according to the Rand Index (see text for details).

a given number of levels by connecting all the shapes in lower levels directly
to their ancestor at the lowest allowed level. The results for a level are given by
averaging the difference in DoS over all pairs of shapes and all ground truth trees.
The results are shown in Figure 4.6 (lower values imply trees closer to the ground
truth). The curve labeled GT denotes the average difference in DoS between
the ground truths. It indicates how much variation exists among the different
ground truths and establishes a bound for the accuracy. Note that trimming a tree
after two levels effectively provides a quantitative comparison of the first level of
clustering. Similarly, trimming the tree after three levels provides a comparison
of the clustering generated in the second level, and so on for other levels.

Clustering. In addition to the hierarchical clustering, we also experiment
with clustering when the number of clusters is known in advance. We cluster
each set of shapes using the self-tuning spectral clustering method mentioned
above [Zelnik-Manor and Perona, 2004], this time providing the number of
clusters as a parameter. We compute ground truth clusterings from each ground
truth tree by measuring the degree of separation between every two shapes, and
then using the computed DoS as a measure of shape similarity to cluster the
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shapes with the same clustering method. We generate clusterings according to
SHED, LFD, and SPH and measure the difference between the generated clusters
and the ground truth using the Rand Index [Chen et al., 2009]. Figure 4.8 shows
the average Rand Index over all ground truths for each set and measure (higher
values imply clusters closer to the ground truth). The curve labeled GT denotes
the average Rand Index between the ground truth clusterings. It indicates the
level of agreement between clusterings generated from different ground truth
trees. Figure 4.7 shows visual results for a subset of lamps.

Shape retrieval. As a shape retrieval experiment, a nearest neighbors search
was performed for each shape according to SHED and LFD. Figure 4.9 shows
a selection of shapes from four different sets along with the retrieved nearest
neighbors. The full results containing each of the shapes as a query are available
in the supplementary material. The distances measured by SHED reflect changes
in part composition such as parts that change position on the graph or parts that
exist in one shape and not the other, as well as changes in geometry. Therefore,
shapes retrieved using SHED tend to have similar part composition. For example,
vases tend to have the same number of handles as the query shape (g, i), and
candelabra tend to have a similar number of candles (e). In contrast, some of the
shapes retrieved by LFD have a different shape structure (c, i). Additionally, SHED
retrieves shapes whose parts have a similar geometry to the parts of the query
shape (b, f, g, k), whereas shapes retrieved by LFD are more varied. Moreover,
SHED deals particularly well with articulations (a), added parts (b), and partial
shape matching (h), which pose a challenge to existing methods.

Ground truth data is not well defined for such tasks in intra-class scenarios,
where all the shapes belong to the same class. For such scenarios we show
qualitative results only. However, for inter-class scenarios, we can quantify
how many of the retrieved shapes belong to the same class as the query shape.
Figure 4.10 shows the precision recall curves obtained for all shapes from the
PSB sets using SHED, LFD and SPH. The curve labeled “SHED Equal Weights”
shows the results when all weights are set to 1. The curve labeled “SHED” shows
the results when using the default weights suggested in Table 4.1. Note that these
weights were learned using a different sets of shapes, and the results could be
improved further by fine-tuning the weights specifically for the PSB sets.

Embedding to a lower dimension. Another important application that
benefits from defining a more accurate distance measure between shapes is
mapping a set of shapes onto a low dimensional manifold. We use standard
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Figure 4.9: Shape retrieval for four sets, ordered by similarity to a query. In
each example, the shape on the center left is the query, the first row are the
5 nearest neighbors ordered according to SHED, and the second row are the
neighbors ordered according to LFD.

multi-dimensional scaling (MDS) to generate an embedding of a set of shapes in
two dimensions. In Figure 4.3 we show a toy example comparing the embedding
generated by SHED and LFD for a small set of vases. For inter-class similarity
estimation, we show in Figure 4.11 the MDS embedding of shapes from the PSB
sets using SHED, LFD, and SPH. The figure clearly shows that SHED produces an
intuitive map with a significant distinction between different sets, while LFD and
SPH tend to produce less organized maps where shapes of different sets are mixed
together. This experiment and the quantitative evaluation in Figure 4.10 allow us
to conclude that SHED is effective when used to separate shapes into different
classes (inter-class context), while the previous experiments show that SHED is
able to appropriately quantify finer shape differences, which is of importance in
an intra-class context.

Weights. The weights for the sets of lamps, candles, vases, and airplanes
were learned from training sets of 1000 trios each, obtained from the ground
truth of each set separately. In addition, default weights were learned using
a training set of 1000 trios, obtained from the ground truth of all four sets
collectively. The default weights were used to produce the results for the PSB sets
in Figures 4.11 and 4.10. The weights for each set are given in Table 4.1.

82



1
08
5 08|
R
[
e
o 04r
—— SHED
ozt 7 *SHED Equal Weights |
“| |—LFD
SPH
0 1 1 1 1
0 0.2 04 06 08 1

Recall

Figure 4.10: Precision-recall on sets of articulated shapes.

Timing. Our method can be decomposed into two parts: finding the matching
between two shapes and computing the SHED according to a given matching
and weights. The computation time of the matching algorithm described in
Section 4.3 depends on the number of parts in each shape, and takes up to
5 seconds for shapes with up to 20 parts. Given the matching and weights,
computing the SHED takes a fraction of a second, and the computation of
the entire set of 100 lamps, or 4950 pairs of shapes, takes a total of 9 seconds.
Segmenting the shapes using [van Kaick et al., 2014] takes up to 5 minutes per
shape. Note that the segmentation method can be easily replaced. In some cases
the segmentation of shapes can be given as input, in which case the method is
very fast to compute.

4.6 Conclusion

We introduce SHED, an edit distance that quantifies shape similarity based
on a structural comparison of shapes. The shape edit distance captures re-
arrangements, additions, and removals of parts. We show a variety of applications
which benefit from an accurate distance measure between shapes. Finally, we
demonstrate that SHED leads to a more intuitive estimation of the similarity
between two shapes than state-of-the-art methods, when comparing shapes
within the same class as well as shapes from different classes.
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Figure 4.11: Embedding obtained with multi-dimensional scaling on a set
of articulated shapes with three classes. The insets show the distance matrix
for each method, where dark green is low distance and white or light green is
high distance. Note how SHED groups the shapes into their respective classes,
while the distance matrices and embeddings given by LFD and SPH are less
organized.

Future work and limitations. The current formulation of SHED takes into
account the similarity of the shape parts and the shape structure in terms
of connectivity of the parts. Additional relationships between parts can be
considered, for example, the difference in rotation of pose after an alignment of
matched parts. Incorporating pose considerations may constitute an advantage
on sets where the pose of the shape parts is one of the main dissimilarity factors,
while it may be less suitable for more general sets where pose-invariance is
sought.

An adequate segmentation of the shapes is required for the computation of
SHED. In general, segmentation is an ill-posed problem. As a practical solution,
we opted to use a segmentation into approximately convex parts, although other
segmentation methods can be used. For example, methods that aim at obtaining
a close-to-semantic segmentation of the shape are possible, although their usage
would require the introduction of more sophisticated measures to compare the
geometry of parts.

Finally, distances between shapes are subject to interpretation and are
dependent on the semantics of the shapes. Thus, we would like to conduct
an investigation to gain insight on how humans perceive finer shape differences,
to enhance our edit distance. Quantification of intra-class distances is still an
open avenue for further research.
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5 Symmetry Aware Correspondence

Finding correspondence between shapes is a fundamental problem in com-
puter graphics. Many existing methods aim to find point-to-point correspon-
dences [Kim et al., 2011; Ovsjanikov et al., 2012], or a mapping between feature
points [Berg et al., 2005; Leordeanu and Hebert, 2005; Kezurer et al., 2015].
Shapes with intrinsic symmetry pose a particularly difficult problem for such
methods, as there can be many solutions which are equally likely to be correct;
an inverted map where the left side of one shape is mapped onto the right side of
the other and vice versa may not incur additional cost. Moreover, in some cases
combinations of several solutions are also likely, e.g. a subset of correspondences
from one solution and another subset from another solution.

To solve this problem, some methods factor the symmetry out of the map
computation, thus finding a map which may be correct, inverted, or a non-
continuous blend of several symmetric maps [Ovsjanikov et al., 2012; Sahillioglu
and Yemez, 2011]. Another prominent method, Blended Intrinsic Maps [Kim
et al., 20111, outputs a continuous map, which is usually not inverted, as long
as there is some isometric distortion between the source and target. This is a
result of the natural distortion in elbows and knees due to pose changes, which
is non-symmetric. However, the blended intrinsic maps are computationally
expensive and may be distorted, and they do not allow matching partial shapes
or shapes with different topology.

We propose to use a symmetry aware correspondence between segments
as an in-between step. The matching between segments can later be used to
improve the point-to-point map between the shapes. Our symmetry aware
correspondence factors out symmetries by allowing all symmetric segments to
match to each other as a clique. Thus, the correct and inverted maps are merged
onto the same map. Clearly, our method does not produce the same level of
details as existing methods. However, there are numerous advantages to this
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Figure 5.1: Overview of our symmetry aware correspondence method. The
two shapes (presented here one above the other) are first mutually segmented
into consistent segments (a) and a shape graph is created for each segmented
shape (b). Note that the shape graphs are in fact isometric even though the
shapes vary greatly in pose. Then, the shape graphs are matched without
breaking node symmetry. In (c), the value of each node marks the graph
distance from the root node, and matching nodes are shown with the same
color. The matching between graphs induces a symmetry aware matching of
the segmented shapes (d).

combined approach of using segments and factoring symmetry out. In most
cases, there is only one solution to the optimization, which allows a straight
forward optimization which is very quick. The solution is more stable and there
is less distortion between segments compared to state of the art methods. We
show that this correspondence is still useful for significantly improving point-to-
point maps. In addition, we can easily identify parts that do not have a match
in the other shape, and discard those parts from the point-to-point map. This
allows partial matching of shapes with different topology. Another application
of our method is detection of intrinsic symmetries within a shape by matching
the shape to itself. The symmetry detection is also a lot quicker and more stable
than existing methods.

Figure 5.1 provides an overview of our method. First, we segment the pair
of shapes using HKS descriptor [Sun et al., 2009]. This co-segmentation is
semantically consistent between the two shapes, i.e. the segment edges are
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usually in a similar semantic position. Then, we build shape graphs from the
segments. Geometric data is not incorporated in the shape graphs, which
indicate only the structure of each shape. The shape graphs are matched in a
symmetry aware manner using a sparse graph matching technique. This provides
the matching between segments, or segment symmetry detection when a shape
is matched to itself.

To compute point-to-point maps between the shapes, we use the functional
maps framework of [Ovsjanikov et al., 2012]. In that paper, a matching
between segments is used to improve point-to-point maps. The segments used
in [Ovsjanikov et al., 2012] are sparse (they do not cover the entire shape) and
non symmetric, whereas we provide a dense map in which every segment can
have multiple connected components which denote symmetric parts in the
shape. Using the symmetry aware correspondence between matches significantly
improves the point-to-point map.

We evaluate our method in a number of experiments. First, we compare the
correspondence between segments to blended intrinsic maps, or BIM [Kim
et al, 2011]. We compare to these point-to-point maps by transferring the
segments from the source shape to the target shape using the map and counting
the number of vertices that are mapped to the correct segment. This is
possible for datasets where the mapping between vertices is known, such as
TOSCA [Bronstein et al., 20081, SCAPE [Anguelov et al., 2005] and FAUST [Bogo et
al., 2014]. For datasets where there is no ground-truth mapping between shape,
such as SHREC [Li et al, 2012al, and for inter-class correspondence such as
matching a human shape to a gorilla, we provide visual results which can be
assessed in a qualitative manner. Typically, the segments that BIM create on the
target shape are more distorted than our method, and tend to be cut in different
semantic locations from the source segments.

In another experiment, we generate point-to-point maps according to the
matching between segments, using the functional maps method of [Ovsjanikov
et al., 2012]. We show that using the symmetry aware segments significantly
improve the accuracy of the map, even without producing a one-to-one mapping
between segments.
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5.1 Related Work

Methods for computing correspondences between shapes can be divided into
two categories according to their output: dense correspondence maps and
sparse correspondence between feature points on the shape. A survey of shape
correspondence methods is provided in [Van Kaick et al., 2011]. In recent years,
there were a few prominent works in the area of dense correspondence maps.
In [Ovsjanikov et al., 2012], a functional maps approach was presented, in
which a mapping between function spaces on the shape is sought instead of a
mapping between points on the shape. This way, many global constraints can
be formulated as linear constraints on the functional maps, such as landmark
correspondence and segment correspondence. We use this framework to
derive point-to-point maps from our symmetric segment correspondences in
Section 5.4. Another state-of-the-art work is Blended Intrinsic Maps or BIM [Kim
et al., 2011], in which several maps with locally low distortion are blended to
form a single map which has low distortion everywhere. Sparse correspondence
between feature points is an equally important problem, since sparse corre-
spondences can usually be transferred into dense correspondence maps using
stable algorithms. Recent works in this area include [Sahillioglu and Yemez, 2011;
Kezurer et al., 2015].

Shapes with intrinsic symmetry have been identified as a challenge in many of
these works. The problem is inherent to the task of intrinsic shape matching: for
shapes with perfect intrinsic symmetry, there are several symmetric maps, and
none of them can be defined as more correct than the other. As most optimization
methods become unstable when there is more than one correct solution, shapes
with symmetry commonly produce less accurate maps or non-continuous maps
in which each part is taken from a different potential map. As a result, the
evaluation of some methods is done with respect to symmetry, i.e. every potential
symmetric solution is considered correct [Ovsjanikov et al., 2012; Sahillioglu and
Yemez, 2011]. Alternatively, the ambiguity can be resolved using a small set of
landmark correspondences, which are often manually selected [Ovsjanikov et al.,
2010]. In BIM [Kim et al., 2011], maps are always continuous, and thus symmetric
maps can not blend and only one of the potential maps is selected as the final
output. In addition, most shapes with bilateral symmetries (e.g. humans) have
intrinsic differences between front and back (such as feet, knees, and elbows),
which can be used to find the correct map. Still, no solution is given for the
generic symmetric case (e.g. octopuses, ants, etc.).
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Some methods have specifically targeted matching between symmetric
shapes. In [Ovsjanikov et al., 2013], a symmetry map is used to compute a
set of symmetric correspondences between shapes. However, for this method
a reference shape with a known symmetry map is necessary. This work is an
extension of the symmetry invariant function space which is used in [Lipman et
al., 2010] for symmetry detection using self-correspondence graphs. Recently,
a stable region correspondence has been proposed [Ganapathi-Subramanian
et al., 2016]. In this work, points on the shape are ordered according to their
feature function values, and the rank of each point is used to find correspondence
between stable regions. Since the values of the feature functions are discarded
and only the rank is used, this method can successfully find stable regions in
shapes with very different geometry. This approach is quite similar to our work:
we also use the relative value of the feature function rather then the absolute
value, by quantizing the feature function and using it to construct a shape graph.
However, we produce finer correspondences and smaller symmetry orbits. For
example, in the stable region approach, extremities of the shape such as the legs
and tail often belong to the same stable region, while we are able to distinguish
between front legs, hind legs, tail, etc.

5.1.1 Segmentation and shape graphs

Correspondence between segmented shapes is related to co-segmentations of
shapes, which many works have explored [Sidi ef al., 2011; Kalogerakis et al.,
2012]. We elaborate on a few of these works in Section 4.1. Note that the goal of
these works is usually a semantic high-level segmentation of the shapes, while we
aim to find correspondences between smaller segments which are more useful
for subsequent matching of feature points. Shape Edit Distance (see Chapter 4)
uses a similar notion of segmenting shapes into parts and matching the graph
of parts, and indeed was an inspiration to this work. However, in this work we
aim to identify correspondences between shapes with different geometry, while
SHED uses the shape graphs to identify the most similar shapes and accentuate
the differences between them. Thus, in SHED the nodes of the shape graphs are
rich with geometric data and are more sensitive to geometry changes.

Shape graphs were also used in [Singh et al., 20071, where the Mapper graphs
were introduced and used for shape similarity. We are inspired by these graphs
and use a similar construct to compute the symmetry aware correspondence
between segments.
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5.2 Consistent Segmentation

The input to our method is two 3D meshes. The first step is to co-segment
these shapes in a consistent manner. By that we mean that the edges between
segments have a similar position in both shapes. For example, if there is a cut
above the knee in one shape, there should be a cut above the knee in the other
shape, even if their geometry and triangulation are different. The consistency of
the segmentation is important for two reasons. First, a consistent segmentation
implies that two similar shapes produce a similar shape graph which is easy
to match. Second, a matching between consistent segments induces a more
accurate matching between vertices. Note that we do not seek a semantic
segmentation of the shape; a semantic part may be cut into several segments.

To consistently segment the shapes, we use a quantization of the heat kernel
signature or HKS [Sun et al., 2009]. We compute the HKS for each shape, and
quantize the HKS value into % bins, so each vertex on the shape has a label
between 0 and k£ — 1 based on its HKS value. Typically, the lowest HKS value is
located at the center of mass of the shape and the highest HKS values are at the
shape’s extremities. We then segment the shapes by forming a segment for each
connected component of vertices with the same label.

In the next step, we build a shape graph in which each segment is connected
to its neighboring segments. The approach of representing shapes using a graph
of segments is similar to the Mapper graphs of [Singh et al., 2007]. They use
overlapping clusters to create a shape graph, in which two clusters are connected
if there is an overlap between them. It has been shown that the Mapper graphs are
useful for computing shape similarity and produce similar graphs for different
poses of the same shape. Our shape graphs have no overlap between segments,
and we deliberately use simpler shape graphs with fewer nodes to capture
common elements of shapes with significantly different geometry. Our goal
is to use these shape graphs to compute a matching between the shapes. An
example of consistent segmentation is given in Figure 5.1(a). The shape graphs
that correspond to these segmented shapes are shown in Figure 5.1(b).

Often, similar shapes have similar HKS values, which in turn generate
isomorphic shape graphs. However, small changes in the shape may cause
the HKS value to differ such that extra segments are generated. These differences
may occur for some selections of k£ (the number of bins in the quantization) and
not for others. The question arises, how to select k. We find that there is a range
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of values that produce acceptable graphs. For small values of k, the resulting
segments are quite large and not very indicative of the shape structure. For very
large values of k, the segments are usually too small and the shape graph does not
convey well the structure of the shape. In our experiments, we found that values
between 6 and 12 produce acceptable results. To set the exact value of k£ we follow
the assumption that shapes which are very different from each other are not
likely to produce similar shape graphs. Thus, we assume that isomorphic graphs
will produce a better correspondence between the shapes than non-isomorphic
graphs, and select a value of k£ which produces isomorphic graphs of the two
shapes, if such k exists. For most isometric pairs of shapes, there is a value of
which produces isomorphic graphs: in the sets of TOSCA and SCAPE, isomorphic
shape graphs can be found for 95% of pairs. If there is no selection of £ which
produces isomorphic graphs, we select the £ which produces the most similar
graphs of the two shapes in terms of the number of nodes and their connectivity.

The combination of using a stable descriptor (HKS) and searching for
segmentations with similar structure generates consistent segmentations for
shapes from the same set (for example two human shapes) as well as shapes from
different sets, such as matching a cat to a dog or a man to a gorilla.

5.3 Symmetry Aware Matching

After we find a consistent segmentation, we compute a symmetry aware matching
between the shape graphs. We do not keep geometric data of each segment in
the shape graph. Instead, we rely only on the graph structure of the shape to
compute the matching. This allows us to match very different shapes as long as
they have the same intrinsic structure. The only geometric information we keep
for the graph is the root of the shape. We define the root of the shape graph as the
segment in the shape which has the lowest HKS value. This segment is typically
located at the center of mass of the shape. Then, we measure the graph distance
between each node and the root node and assign this value as the label of the
node. Therefore, a node in the shape graph can only be identified by its distance
from the root node and its connectivity to other nodes, and symmetric branches
cannot be distinguished from each other. Branches which are not symmetric can
be distinguished by their position in the shape graph. For example, the nodes of
each leg have the same properties, while the branches of an arm and a leg can
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be distinguished by the position of the head, even if each branch has the same
number of nodes.

Our symmetry aware matching technique takes advantage of these properties
to quickly identify symmetric nodes in the graph structure. Finding a matching
between isomorphic graphs is usually simple and can be done in several different
ways. To provide a solution for non-isomorphic graphs as well, we use a
spectral method that produces a sparse vector in which non-zero elements mark
correspondences between nodes. This method matches groups of symmetric
nodes in one shape to their matching symmetric nodes in the other shape.

5.3.1 Formulation

We follow the quadratic assignment model definitions and formulations pre-
sented in SHED (see Section 4.3). Similarly, we define a unary term and a binary
term and use them to construct an affinity matrix M. The unary terms describe
the relation between a segment ¢ from one shape and a potentially matching
segment j in the other shape. The binary terms describe the compatibility
between a match between two segments (7,j) and another match between
segments (k,l). For example, if segments i and & are adjacent, and so are j
and [, there is a high compatibility between the matches. But if one pair of
segments is adjacent and the other is not, there is a low compatibility between
the matches.

The unary cost is the sum of the following three components:
g0(7): The graph distance between the segment and the root node.
H{(i): The histogram of graph distance. For each segment, we count how many
segments are adjacent to it (or have a graph distance of 1), how many segments
have a graph distance of 2, and so on. This forms a vector which signifies the
connectivity of the segment.
g1(i): The distance of the segment from the closest leaf of the shape graph, or a
node with a degree of 1. This term is useful to distinguish between branches of
different length in the shape graph (for example an arm with 4 segments vs. a leg
with 5 segments).
The first order cost is then given by the following formulation:

C(i,7) = lgo(@) = goIl + I1H (@) = HG) + ll9:() — 9G]l - 5.1)
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The affinity between the segments is computed similarly to Section 4.3 by:
U(i,j) = exp(=C(i, j)/0), (5.2)

where in our experiments o = 0.5.

For the binary term, we compute the difference of graph distances:

where g(i, 7) is the graph distance between nodes ¢ and j, and the difference of
the unary cost between the matches:

du(i, j, k, 1) = |C(, 7) = C(k, Dl (5.4)

where C(i, j) is as defined above. Local structural deformations in a shape, such
as missing or additional parts, affect the unary costs of nearby parts by the same
amount (for example, adding a constant amount to C(3, j) for every part j in
the same branch). The second term d,, is not affected by these changes, so it is
helpful when matching partial shapes or shapes with partial matches. Again, the
affinity between the two matches is computed by:

Ul(i,j) = exp(—(dg(i, 4, k,1) + du(3, 4, k,1)) /o), (5.5)

with o = 0.5.

5.3.2 Sparse spectral matching

In common spectral correspondence techniques such as [Leordeanu and Hebert,
2005], the discretization (or binarization) of the output vector is driven by the
constraints. For example, when searching for a one-to-one matching, the first
selected match for each node determines that there are no other matches in
that row. The discretization ends when there are no more possible matches, or
for one-to-one matching, when all elements have exactly one match. A similar
process is used in the matching needed for SHED (see Section 4.3). The iterative
adaptation continues as long as there are possible matches. In our symmetry
aware matching, groups of segments of any size can match groups of segments in
the other shape. Thus, a matching in which all the segments of one shape match
all the segments of the other shape is valid (though not very useful). A different
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method is necessary to guide the discretization. By examining the continuous
output vector, we can see that it is dense and unpredictable. The scale of values
changes greatly between different nodes in the shape graph. In addition, for
some nodes, there are a few significant values in the vector, while for others, all
the values are of similar scale. Thus, a threshold which might work for some of
the segments may not be effective for others.

In our case, we can use the properties of the shape graphs and the structure
of the symmetry aware correspondence to find a sparse solution to the matching
problem. The sparse solution we find is easy to discretize as there is a clear
distinction between correct matches and incorrect matches. The sparse vector
can also be interpreted as a confidence value, so when a node has no matches of
high value, we consider it a low confidence node and discard it from the matching.
This is useful for matching partial shapes or shapes with some added parts.

Our solution is based on the fact that the shape graphs contain only discrete
information (the graph distance from the root node), and therefore many nodes
share similar properties. In fact, the first order term of many nodes is equal. We
can compute a matching between shape graphs using first order data only, for
example by matching each node i with the nodes j which have the smallest first
order costs C(i, j) (see Equation 5.1). We observe that in most cases, the matching
found by the first order data is locally correct, but includes incorrect symmetries.
For example, the front legs are correctly matched to the front legs but also
matched to the hind legs, or the head is correctly matched to the head but also
matched to the tail. Thus, our goal is to break the incorrect symmetries and keep
only the globally consistent ones: for example, front legs can be distinguished
from hind legs by using the position of the head in the shape graph. However, we
would like to keep the local relations between nodes, such as the order of nodes
in a branch.

Suppose the matrix M contains only the first order data on its diagonal, and
zeros everywhere else. If the values on the diagonal are unique, the primary
eigenvector of M is 1 for the highest first order affinity, and 0 everywhere else.
However, the first order values are not unique. First, compatible matches tend to
have similar values, for example in a perfect matching the values of all matches
that belong to it would have an affinity of 1. Second, in our discrete shape graphs
multiple matches can have the exact same value, and therefore the same affinity.
Thus, the primary eigenvector of M consists of a random vector in the subspace
that is spanned by multiple correct matchings, and zeros everywhere else. Note
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that this vector is sparse. In other words, the eigenvector contains values that
correspond to a mix of matches from all the possible matchings which are equally
likely. These contain symmetries that originate from intrinsic symmetry in the
shape, such as left-to-right symmetry in the shapes we experiment with, as well
as symmetries that originate in the first order data for which we have additional
information, such as matching of arms to legs. We would like to collapse the
space of solutions such that only the correct matching forms a possible solution
to the optimization. Unfortunately, for shapes with intrinsic symmetry, we do
not have enough information to distinguish the correct matching and symmetric
matching. However, we have additional information to distinguish arms from
legs or the head from the tail.

Our goal is to restrict the eigenvector to a specific subspace which spans
only the correct solution (up to intrinsic symmetry), while keeping it sparse. To
this end, we use the second order data we have as a tie-breaker; it should direct
the optimization towards a specific solution within the subspace of possible
solutions spanned by the first order data, while staying within that subspace,
without overriding the first order data. We thus scale the second order data to a
small value such that it can not affect the first order data, for example by dividing
it by the number of non-zero elements in the matrix M. This has the effect of
producing a sparse vector within the subspace, which respects the second order
data as well as the first order data. The sparse vector can be easily discretized by
searching for a gap in the values that correspond to the matches of each node.
If such a gap does not exists, it means the confidence of the node is low and we
do not match it. Note that this scheme relies on the discrete nature of the shape
graphs, and would not work in a setting where the nodes contain geometric data
which may deem some matches more likely than others.

To summarize, our algorithm consists of the following steps:

e Computing the first order and second order data terms.

e Scaling the second order terms to a small fraction, for example by dividing
them by the number of non-zero elements in the matrix.

e Computing the first eigenvector of the affinity matrix M.

e Discretizing the sparse output eigenvector.

An example of the matching between graphs is shown in Figure 5.1(c). Nodes
with the same color are matched to each other. The induced matching between
shape segments is shown in Figure 5.1(d).
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5.4 Evaluation

5.4.1 Qualitative evaluation

To start the discussion of our results, we show a gallery of a few examples for
various shapes in Figure 5.2. Similar colors denote matching segments, and the
dark gray areas in (e) are segments for which no matching was found. In (a) and
(b), we show typical results for shapes from the same category. An isometric
shape graph can be found for almost all of the shapes of the same category. Note
that for many categories, relatively small segments can be matched, as can be
seen in (b). Using small segments increases the accuracy of the correspondence
and is beneficial for the various application discussed below, such as point-to-
point maps, symmetry detection and mapping feature points. In (c) and (d) we
show cross-category correspondence, such as matching a man to a woman (c)
and a man to a gorilla (d). These shapes have large variations in both pose and
intrinsic geometry, yet the shape graphs are still isometric and in most cases the
segments are cut in roughly the same positions (e.g. above the neck, below the
knee, etc). An exception to this the knee area in (d) where there is a misalignment
of the segments due to the short legs of the gorilla. Still, this discrepancy covers a
local area and most of the shape is matched correctly.

In (e), we show an example where the shape graph is not isometric within
the same category. In our experiments this is a rare case which happens for less
than 5% of the shape pairs. In this particular case, the legs of the cat show a lot of
flexibility, and essentially emerge from slightly different locations in the torso,
thus breaking the symmetry of the shape. As a result, the left leg is not matched.
Note that our method discards correspondences with low confidence rather than
forcing a match for every segment. Thus, the incomplete matching is still useful
for the applications described below without introducing errors.

In (f), we show a matching between two centaur shapes. While most of the
symmetries are identified correctly (front legs, arms, etc), the tail is considered
symmetric to the hind legs. This is a limitation of our approach, since in this case
the branches in the shape graph that correspond to the tail and back legs have
exactly the same length and connectivity, and cannot be distinguished according
to the shape graph without additional geometric data.

In Figure 5.3, we show an example of matching shapes with substantially
different shape graphs. The shape graphs are also displayed. The numbers on the
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(d) (e) ()

Figure 5.2: Symmetry aware correspondence between shapes.

graph denote the node value, or graph distance from the root node, and the colors
of the nodes denote the correspondence between nodes (nodes in the second
shape which were not matched are black). Note that our correspondence method
matches the similar sections of the shapes while leaving dissimilar sections
unmatched. Thus, this matching is also useful for the applications described
below. Interestingly, even though the shape graph is quite different many of the
segments are still cut in similar semantic positions of the shape (for example in
the legs and neck).

5.4.2 Comparison to BIM

To evaluate the consistency of the segments we find and the accuracy of
the matching between these segments, we compare the segment-to-segment
correspondence with BIM [Kim et al., 2011]. The comparison is performed
by mapping the segments using the point-to-point map and then counting
the percent of vertices which are in the correct segment, weighted by the area
covered by each vertex. Ideally, for sets where we have a ground truth mapping
of vertices, the segment that contains the source vertex should be mapped to
the segment that contains the target vertex. For this quantitative experiment,
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Figure 5.3: Matching shapes with non-isometric shape graph. (a) Symmetry
aware correspondence between a horse shape and a dog shape. (b) The shape
graph of the horse shape. (c) The shape graph of the dog shape.

we map shapes for which we have ground truth in the TOSCA [Bronstein et al.,
2008], SCAPE [Anguelov et al., 2005] and FAUST [Bogo et al., 2014] datasets. The
results are shown in Table 5.1.

We also provide qualitative results where the slipping of segments is visible,
as shown in Figure 5.4. In each subfigure we show the source shape in the
center, the matching segments in our method on the left, and the matching
segments using BIM on the right. Note that in (a), the matching of the segments
in the head, chest and legs is more accurate with our method than with BIM.
Similarly, in (b), the difference in matching is particularly visible in the head
and arms, where the segmentation of our method more closely resembles the
source segmentation. In (c), we provide an example from SHREC dataset [Li et
al., 2012al where there is no ground truth matching between vertices. The head
is matched more accurately with our method than with BIM. Another advantage
of our method that is illustrated in this example is the matching of partial shapes.
In BIM, the tail of the bull is matched to the significantly smaller tail of the
pig, causing a lot of distortion in that area. Similarly, the BIM between two
shapes always include the entire shape, even for partial shapes. In our method,
we can identify segments which do not have a match in the other shape, and
consequentially provide a better mapping for the segments which do have a
match.
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Our Method BIM
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Figure 5.4: Comparison of our method to BIM. In each subfigure, the
segments of the central shape were transferred to the shape on the left using
our method and to the shape on the right using BIM. Matched segments are
shown in the same color.

5.4.3 Point-to-point maps

The correspondence between segments can be used to enhance point-to-point
maps between the shapes. For this, we use the functional map framework
of Ovsjanikov et al. In [Ovsjanikov et al., 2012], the point-to-point maps are
improved using large and sparse segments (i.e., the segments do not cover the
whole shape). Note that the segments in that work are not symmetric. Naturally,
breaking the symmetry of our segments prior to computing the maps can be
helpful. However, in this work we aim to show that the matching between
symmetric segments, which can be found quickly and in a stable manner, can
still greatly improve the point-to-point maps without resolving the ambiguity.
The advantage of using our approach is the use of dense and stable segments:

99



Figure 5.5: Examples of segment-level symmetry detection.

our segments cover the whole shape and are smaller and more accurate than the
large segments used in [Ovsjanikov et al., 2012].

To evaluate the point-to-point maps, we measure the average geodesic error
between points in the target mesh and their ground truth correspondence.
In [Ovsjanikov et al., 2012], the functional maps framework was evaluated
using WKS descriptors and functional constraints based on matching segments.
We compute point-to-point maps using WKS descriptors only (without using
segments), using only constraints based on our symmetric segments, and using
both. The results are presented in Table 5.2. Our results show a significant
improvement of the geodesic error when using our symmetric segments, even
without resolving the symmetric ambiguity. Interestingly, when applying the
segment-based constraints, the results do not further improve with the addition
of WKS descriptors. This suggests that our symmetric segments are fine and
accurate enough to capture a lot of the information contained in the point-
specific WKS descriptors.

5.4.4 Symmetry detection

Another application of our method is segment-level symmetry detection. Again,
we sacrifice the precision of point-to-point symmetry maps to provide a solution
which is extremely quick and stable; the entire process of symmetry detection
consists of computing the HKS function for the two shapes and solving a single
eigenvector problem of moderate size. Symmetry detection is computed by
matching a shape with itself. This generates symmetric segments, or cliques
of segments where all pairs match to each other. This matching can easily
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Category Symmetry Aware Correspondence BIM

TOSCA

cat 0.804639 0.870072
centaur 0.941216 0.937418
david 0.966373 0.946934
dog 0.936976 0.907939
gorilla 0.952195 0.938877
horse 0.924313 0.935324
michael 0.962636 0.951064
victoria 0.961154 0.953213
wolf 0.982075 0.991781
SCAPE 0.921698 0.914941
FAUST 0.855928 0.822367

Table 5.1: Comparison of Symmetry Aware Correspondence to BIM.

be translated into a segment-level symmetry map by filtering out all the self-
matching segments.

Note that in this application, we always match a shape graph to itself. This
provides a guarantee that there is no slipping of segments, and that the matching
is always performed on isometric graphs. Thus, the only possible errors in the
matching are due to the structure of the shape graph. For example, if the branches
of aleg and a tail are of the same length in the shape graph, they are considered
symmetric even though the geometry of the shape suggests otherwise. These
errors can happen when too few segments are used and they fail to capture the
details of the shape, or when too many segments are used and the finer details
of the shape are interfering with the symmetry detection. We find that for most
shapes, the method is stable when the number of bins % is between 6 and 10. A
higher number of bins is generally preferable for this application as it generates
smaller segments.

A few examples of our symmetry detection are given in Figure 5.5. Note
that our method is robust to isometric distortion, as visible particularly in the
two shapes on the left. In the centaur shape, it can be seen that our method
distinguishes well between similar elements with structural differences such
as arms, hind legs and front legs. Finally, note that our method can produce
segments which are small enough to indicate symmetry between feature points,
as suggested in the next section.
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Category WKS WKS + Segments Only Segments

TOSCA
cat 6.271 5.821 5.821
centaur 5.197 4.089 4.089
david 6.371 4.091 4.091
dog 7.409 4.394 4.398
horse 10.422 6.402 6.403
michael 6.845 5.465 5.465
victoria 5.169 3.850 3.853
wolf 1.414 1.206 1.204
Per-category average: 6.137 4.415 4.416
Per-shape average: 6.552 4.830 4.831
SCAPE 0.104 0.055 0.055

Table 5.2: Evaluation of point-to-point maps. The numbers represent the
average geodesic error (lower is better).

5.4.5 Matching of feature points

Another possible application of our method is using the matching between
symmetric segments to compute symmetry aware matching between feature
points. This can be used for matching feature points between two shapes or
for detecting symmetric feature points when matching a shape with itself. For
example, in the recent work of [Kezurer et al., 2015], between 10 and 20 feature
points were matched for most shapes (due to the high complexity of the method,
a higher number of feature points is generally not feasible). In our method, the
shapes are typically segmented to between 15 and 40 segments. Since feature
points are laid out rather uniformly over the shapes, it is likely that the segments
produced by our method are such that each segment contains no more than a
single feature point, at least for the majority of segments. These feature points
can be matched directly according to the segments that contain them. In case
a few feature points fall in the same segment, the matching between unique
feature points can be used to resolve the ambiguity.

5.5 Conclusion

We present the concept of symmetry aware correspondence, in which we
compute correspondence between shapes while factoring out the symmetric
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components. We develop a method for computing symmetry aware correspon-
dence between shape parts. The level of details in this mapping is not as high
as in conventional correspondence methods which produce matching between
feature points or point-to-point map. For the price of this compromise, we get
the following advantages. Our method is extremely efficient, requiring a single
extraction of an eigenvector. The method is computationally stable, and it is
robust to various changes in the shape, such as differences in body types or
extreme pose changes. We are also capable of matching shapes of different types
with different geometry, as long as the structure of the shape is similar. It is also
important to note that within the limited domain of matching shape segments,
our method outperforms state-of-the-art shape correspondence methods.

We show that a point-to-point map can be improved by using our symmetric
segments, even without breaking the symmetry. We also show an application of
detecting segment-level symmetry in a shape. As a possible future application,
transferring the segment-level correspondence to a correspondence between
feature points is potentially quite simple, both for symmetry detection and
matching between shapes.

An interesting direction for future development is breaking the symmetry. To
this end, we propose a two-step solution, consisting of first finding the symmetry
aware correspondence, and then computing a non-symmetric (i.e. one-to-
one) correspondence while making sure parts in the same branch are matched
consistently. State of the art correspondence techniques have known limitations
when considering shapes with intrinsic symmetries, and this solution has the
potential to be significantly less complicated than computing a non-symmetric
matching in one shot, without prior information.
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6 Conclusion

6.1 Summary of Contributions

In Chapter 2, we presented Dynamic Maps, a method for browsing and ex-
ploration of shapes, images, or any other collection of elements that can be
represented by a thumbnail image. Using our method, thumbnails are laid
out on a seemingly infinite grid which can be navigated in any direction like a
standard map. The map is built dynamically in real-time after every user action,
and the currently displayed patch is always continuous and smooth, i.e. near
by images are similar to each other. This is unlike global mapping solutions
which are bound to have discontinuities within the map. The local nature of
the map also allows it to be created in a very efficient manner, and in constant
time, regardless of the number of elements in the dataset. Thus, it is suitable
for massive online collection of images. We implemented and evaluated the
system for a dataset of several thousand 3D shapes and another dataset of one
million images. The evaluations show that this method is generally preferable to
common browsing methods such as relevance feedback (or “similar images” in
modern search engines).

In Chapter 3, we proposed a method for learning a similarity measure for
a collection of images from crowdsourced data. Once again, the method is
applicable to any type of data that can be represented by a thumbnail image.
The advantage of a crowd-based similarity measure is that it contains a lot of
semantic information: it is directly derived from human perception of similarity.
This work has two main contributions. First, the definition of a suitable question
to ask the crowd. Since semantic similarity between elements is relative to the
context, this is not a trivial task. We showed that clustering queries provide a lot
of information and require a relatively small amount of effort from each crowd
worker. Second, the development of an iterative technique that uses previous
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answers to construct the most effective queries in the next phase. Using the
iterative process, one can gather a lot of information from a relatively small
number of queries.

In Chapter 4, we constructed an automatic shape similarity measure which
is more semantic in nature than previous state-of-the-art methods. We defined
the shape edit distance (or SHED) as a summary of all the transformations that
a shape has to go through to become the other shape. To this end, our method
segments the shape into parts, and compares the parts’ geometry and position in
order to find a matching between the two shapes. The matching between parts
defines the transformations of each part, which are aggregated to form the shape
edit distance. We evaluated our method on a variety of fundamental applications,
and proved that it is more effective at capturing the semantic similarity between
shapes, or a similarity measure which is closer to the human perception of
similarity, than existing state-of-the-art shape similarity measures.

A notable additional contribution of this work is the method that computes
the matching between shape parts. Existing methods for matching graphs
or feature points usually focus on finding a one-to-one matching or one-
to-many matching, and perform poorly for other correspondence structures.
Since SHED requires a more complex correspondence structure, we developed
adaptive spectral matching (see Section 4.3), an extension of spectral correspon-
dence [Leordeanu and Hebert, 2005]. Adaptive spectral matching iteratively
adapts the optimization to selected matches within the correspondence. The
iterative process directs the optimization towards a solution which is more
consistent with the structure of correspondence. Adaptive spectral matching can
be used for one-to-one or one-to-many correspondences as well, and in most
cases it outperforms the original spectral correspondence method of [Leordeanu
and Hebert, 2005].

In Chapter 5, we delved deeper into the realm of correspondences between
shapes and between shape parts. We proposed symmetry aware correspondence,
a type of correspondence in which symmetric elements can be matched to
groups of symmetric elements, without resolving the symmetry into a one-
to-one matching. We developed a method that computes this symmetry in
an extremely efficient manner. The output is a less detailed correspondence
than one-to-one matching, but for this cost one gains greater accuracy, greater
stability, and a much shorter computation time. This can be viewed as a
decoupling of computing the correspondence and resolving the symmetry. After
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the symmetric correspondence is found, it can potentially be resolved into a
one-to-one matching as a post-process, instead of solving the two problems
at the same time. Even without resolving the symmetry, the symmetry aware
correspondence is useful. We showed that it can improve non-symmetric point-
to-point correspondences using the functional maps framework [Ovsjanikov
et al., 2012]. In addition, our method can be used for segment-level symmetry
detection or symmetry detection of feature points on the shape.

6.2 Future Directions

In recent years, image similarity measures have become more and more semantic
in nature. This is due to advancements in deep learning and convolutional
networks, as well as the high availability of textual context for images as training
data [Krizhevsky et al., 2012; Wang et al., 2014; Szegedy et al., 2015]. Deep learning
methods for image retrieval require massive training sets with millions of element
with some sort of ranking among them. Still, the ranking of training data is usually
computed automatically by hand-crafted features. It would be interesting to
combine this approach with a crowdsourcing technique for gathering image
similarity. Our crowdsourcing solution can be used to measure similarities
between key images in the dataset, while automatic features propagate the
computed similarities to other images.

A key element of our crowdsourcing solution is the efficient query selection.
This algorithm can also aid the computation of deep learning networks which
require many queries. For example, in [Wang et al., 2014], triplets were sampled
based on a relevance score for computational reasons. Our clustering based
queries may drastically reduce the necessary computation, thus allowing a larger
portion of the training data to be used effectively.

While the image similarity ranking has greatly improved, the image browsing
experience has not changed much in recent years. In the last decade, commercial
image search providers have kept the same paradigm of keyword search with a
rarely used relevance feedback feature (or “similar images”). Introducing a more
flexible paradigm such as our Dynamic Maps into commercial image search
can have a great effect on the quality of image search and in particular image
browsing where the end result is not specific or known in advance. The Dynamic
Maps framework is an initial step towards this goal. There are many directions for
future research such as combining our method with keyword search, constructing
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local patches in a non-greedy manner, and reflecting past user actions (rather
than just the current state) in the choice of which images to display next. Another
interesting direction for future development is using Dynamic Maps on a mobile
device, for example for personal photo collections. Such collections typically
have a more limited keyword support if any, and are large enough to be hard to
manage or navigate using the common paradigm of a list ordered by the date the
picture was taken.

In the shapes domain, leading similarity measures are far less advanced than
in the image domain. One of the difficulties in shape analysis is the balance
between local features and global context. For example, in a human shape,
a cylindrical area could be a part of a finger, an arm or the torso, and global
information is necessary to determine which of these options is correct. In
SHED, we offer a such a balance by computing a shape graph of nearly convex
parts [van Kaick et al., 2014] The shape graph provides global context for the
local geometric properties computed for each segment. Similarly, our Symmetry
Aware Correspondence uses the global context of segments that are created using
local features. In both SHED and Symmetry Aware Correspondence, failure cases
are mostly a result of inconsistencies in the segmentation. Coarse segmentations
tend to be more consistent but provide less information on the finer details of
the shapes. Fine segmentations tend to be less consistent since small changes
in the geometry may significantly change the shape of a segment or introduce
additional segments. Thus, future work should carefully examine the balance
between level of details in the shape and the consistency of the segmentation. A
possible direction for future research is combining several representations with
different level of details.

Shape similarity can also make use of deep learning from large amounts of
tagged data, similarly to image similarity measures. Such methods are becoming
popular recently (e.g. [Qi et al., 2016]) but are not yet as refined as methods for
image similarity. In these methods, the representation of the shape is a rendering
or a volumetric rasterization of the shape into voxels. This representation mimics
the 2D representation used for images, but it does not fit naturally with common
sparse 3D shape representations such as triangular meshes or point clouds, and
contains a lot of redundant information. An interesting question is whether the
representation of a shape as a collection of segments or a shape graph can be
used in a deep learning approach.
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N1Na 117Na 72pnn 017 0PN 1271 ,NINTAWY TYINT AP K10 AT 2100 1I8TNWAaIN
,N127Y TN-TN NARNN NIN'XYNYT Y1780 IR N8I DTVNT0N AARNDNN 11D 1N PN
NINNY IN7IW ,0Ya1% TNN 27¥%7 117N4a 71 D7PY ]2 w1aNn 2NN DN NN112Nn 7y14aa1

.71 71"'NN TINN 19182

70 92 D'RDNN 117NAa L (N2 DWATIW 1a0) 01217 027 7@ ANRNN 11ayw 197 0wH Wt
NINT .TINTI N7 12 0N ,D'N17I80 8 7Y IN1NT 1770 N10 110N N01N2 7970 729 DNR N0IXa
071111n N1117N4a NWAaNN NYW ,0'177 TNR 7@ 1IN D127y TN-TN NINNNDNY T1A712
NINNN N1IX2 V1277 1N N9 (sparse) 19T 11N NINTNWAIND 1171Na DN .AT 210N
v 0012nN DN™MTAYN 0WYINN 1IN 127 .71704a2 71929 w1 019970 12 DIARNNN 1N Nna
NINNNDN 712V 27 01Y'A10 0124 0127V 12w 79T 1170a N'wany N171UpP4a0 NRRNN

.7'2120 1Nal nanww

1WATT NTYRMIMIY NI'R N1IWYAT0 ANNRNDN N31N3 1WNI N'1Y TN-TN AARNN NN
N™MPYNION NARNNY D'WINTW DIWT 2 DN 1IR ,]2 '3 YY R .0a011 D7TYN 13 DWY
NANRNN1 WNNWNY N"IW 0NN 1INIR L1191 .02V TN-TN AARNN NIN¥ND NYY DA
N2 .(Ayawvn N7y TN-TN N'NW) D171¥N "2 1a19¥ ANRNN 1awY Nan Yy Nvnon
NN N7I¥A N'ATA ATIVAT0 NIATY NIR YV DB ARRNNA wRnwny N1 L1
DYVUPN 12 NP ANRND TN JaINA DAINY 0T ,07PAN 1172 .0WYUPnn
%W D121 190N D'WNNWN 1INT INRN ,N1I¥2 773y DI1T1P1 12 DPN' ANRNnY
1IRW N1YAT0N ANRNNN TIVA .NNN NTIP3R 10T 1R NAMYR RY 2119 DBpn
,IN17T 1NT N1 77V 119W 117040 ,N1737Y TN-TN NINRNNN N111713 N1NA NN D'RNIN
NINXIN AWK NIYW 1T Y INYNIW NIARNAN N1 DIPTR YUPAN DN NINRNDNNT

.27y TN-TN NARNN

.INONN NWan Nya 110114 DY NT P19 NIRNIN



W D'pYnn 12 nnrknn 0'RyInt L [Van Kaick et al. 2014] ninp-vyna o'pyny
nin %y NwIaTin N2y N171va DR 0'2'vN 1ININ NRRNNN ' 7Y .N13WN D11INn
N1IX NINT7 N721010 1T NVW 127 .N1IWN NI1X2 17 ONINN P97N0 98 P90 22 pnyvin?
N1ATVINIVIN 11'AT DTN N1INN N11I¥N N2V PNON .WINTW Ja1N 1N 11120 1NN N19ya
N1 NINTY 172 "WIN'W N1N 127 .D171X 72 11'NT YW N'W1IR n0'an? nanp n'on'i
NIM1IAYPY N1ATWN NITIN 172 777207 1121279 q0112 ,n"1ppPn ANIN 7102 DIniT

Ny

12 1IN 072731 "2 ANARNDN .N17IND P90 12 ANRNDNN Q1Y N1 NY'w21A 11200 pPon
NNNNN NN T11NY 21717 N ,N1217NKN 011W2 D120 PN RP11 R1D 177y D1T1P)
[Leordeanu and Hebert 2005, Berg et al. 0217 TnN 9w nnRNN IR D27y TN-TN
.2005, Kezurer et al. 2015, Cour et al., 2006; Leordeanu et al., 2009]
N13N1N 12 97221 10w 1IN ,IN1T 12711 AARNN 112N 112V N1PAWPAaR NINa 198 Nvw
:N1111"2-1T7 0'2717-TNN AARNN DT, D118 N2V PNON 11AY 010K NARNDN 11101
-0717 0N Y2AN ,N1IWN N1INA 0970 190NnY 0'NNNY 7127 N111¥AN DNR 732 p9n Y2
N1117N4a 1aon 793 1T2 DIW' ,NT0NT 0WNA D'¥17I8N1 INNND .0N1N D1 0'279
12 NINRNNNN P70 NT2 11PN . 019787 NN121 N117102 0D'ARNNW 010101 0D1NNN
NN 117N4an NPY31 DIARNDAN 1N DR P70 T1va TNR 1170an Np71n% D1Mwy nponn
/AKX DNAIR DY¥N 1ININ L 110N40 .N1APY N1NW ANRNN NY2pnn 721 ,1n101
11919180 117NAN DN AN N, (@daptive spectral matching) 1209 TN 7710790
NN 1pnn AT on"a9N [Leordeanu and Hebert, 2005] nyivpao nnrnn YW
D'NTP1IN 0'2%W21 17N2IW NINARNNY ORNNL 12700 Ja1IN1 NINTINWAIND N1¥pI1a

JUINP 117NA 1NINY NI2TWY NIARNNYT N1ATTY 1N11 127WAaTNN DNTM1AYRN N

:N1N INNN2 1N011A 0T 2712 NINNIN
Shed: shape edit distance for fine-grained shape similarity.
Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung, and Daniel Cohen-Or.

ACM Transactions on Graphics (SIGGRAPH Asia), 2015.

N11ND TP9IN 97221 NTYNNANL NTIVNT0 ANRNN 5§

.D'YUPNN 12 NNRNN NIN™NYAT DWYVPNY N71¥A NP1I7N YW AN1T 11V 11PNa AT P1aa
N1IVNT0 NINTY 17TI21 NITIN "2 N1A1aX NIARNN R1¥NY T2 1T NpP112Y] wnnw oyan
N0 (point-to-point correspondence 1R dense) nalax NNNRNN .N1NIY W NN1A
NP17n INRY .N"wn N1IN2 TYT NTIP3 DOTAIN 00182 ATIP3 92 112y NAW anknn
,(0"YINo 0'P7N "T2% N12NA N7 N NP17NN,N17]) 1IVN1A 1A1N1 D'YVPNY NNIND
1"21 yupn IRNN nN1X 9312w, (shape graph) n11¥n PN NN INNNND 974 D781 1IN
,NIINN N12N 9V yTIN Paon N11¥n PN 972 .DWP Dnp 02110 D'yupn 1w 9]
ANWYT NIANIN J1'RW DIARDN 717W91 NARDNN DIN 2819 Nan 9y 12 wnnwny niaw
N1NN7 7722 NIIND P90 97112 D'WNNWN 11NIR ,1B192 .001NA P90 12 DIARDNN
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7170001 ,NYNunn 2NN D'WPTAIND O1P' YV 002NN N1a011 NIN7'NRW 01NN
N177120 NIN7IRWY NN NATWN NINAN .NIN7NWN 28PN 718119 TY 1NNV 9V TN
NniN1T N1I1INN NINTY? 97 ,%wWnNn%) AN N1p"1Tn 992 1172 10 T2 NnT 0121P0 D'UPMAIN
72 TWNI N'WIW N11NNY N1 1211 N1I3INN NW 1N 17N 77vn% awp R, TINN
N1 DWPTAIND 72 172 0PN NTNW L1 N2 .(1TA 1T TIND MY wi17wn
1IN ,127 .07217N O'pPNIN Y NN0NN TN 7R N1 R10 N1 01PN 0'PNN0
.N2 TV 117 Y1770 722 177 1T N1217P N1'AY NTINANY N11RN D1IATY AN7NW 721 DUANRTT
N21770 NN2120 71NN N111N0 N 01N TNT 1ANNL TNWY2] 031NN 07N12 12NIN 72 DY
,1TN 1T N"0N" N1PINT 1707 198 N111INN 777000 %2 D11WNY 0129w .Aynvnn An1na
DPNNNT N1 P11TN AYAYAN 2NN DWPTMAIND O1P'N DINYNW N1a011w 7221 N

.07I¥{PNN1 072710 N17N2IN D1InNnn 12

1"'NT NDITTAT D1ANN 11PN NIYRAND DAWINNY 71'NTA DTN 12 A9W9 113
7NN 71NN N1AXTA N111IAN 71N2Y 10 ,0NA1T7 .011¥\N11InNn 127aNn 7Y N1001ann
NTYNNANI 1ARNA N111ANN IRY IN 1NN Yaya's1 'viandn 11T DR 17112y Awn9 ,7172

1UN1UIN 11°0T N1pPvn

:N1N IANN2 110718 AT 219 NIRYIN
Toward semantic image similarity from crowdsourced clustering.
Yanir Kleiman, George Goldberg, Yael Amsterdamer, and Daniel Cohen-Or.

The Visual Computer, 2016.

11NN NI2MY PNIN NIYYNANI N1IX 12 11'1T 4

N2 TY 112700 NIN™P PNON D17 .N17TA™T NP0 D171 TPNAN1 082N D'Phan 11wl
,NMTALPN NNIND D12WN DY 10T 1IN, DY D11V PA D17IX 772 NINANA 1p'Yya
N1 N172TYA DY'WR .AT1AYPN ANIN 71N D17I¥A 71'ATY D12'wn 10N K7 N
178 NYW .7VIN0 TWPN 10N 117N T P17 N1APWN 1271 77120 011NN ANIN 7Y N1001AN
P90 11'NT 10112 WIW DN ,DONNR NT192 DINAImMN N11IX 172 71T N1apwn 1A
NN 11'WY 0711w 102 12V N11IX IR L, (Q010 ANI¥nn 9172 PPN AWN2 9wnY)
1VINDN IWPNN NN N110N 10 .(D7P70 W Y1172 1IN AN'TON 9WNnY%) N11N2 N1N11a1740

NTT WINTW AT IN QN1T 11220 N17Y2 D11IN DINTY Nan %y waTan

NN NN 1A 11'NT NTN, (Shape Edit Distance) n1ixn na71y 7n12 0K D'A¥N 1IN
7712 1120 11"'NTY 40112 ,N11INN W N1 0117TY DY 11N T2 N1'NAN IWN N1TTAN
,N0N 1122 N2V 112YW NITIY 172 11'NT AnTN N1INA N21MY NN, P14aa .N11INN 112
AWNN N1 N'WAN0 11"'NT NT'A 7A0n N1N 2 DW1 .0'P9N YW Y1171 1IN AN'Thn L1110
%Y Dan1 N1INW 121 N11IX 12 ]1'ATA DR N1 0127 TN Dapwny ,ni1apn nvw
N11¥7 DNR 71X 71907 7T22 NWATIN YARAN DN1IN] DR T1TAY R0 1200WN .0TR 112 ' T
NI1Y 72 079NN 11NN, 72 711¥7 .N7IND P20 7Y D27V N171va vIN' T 9V, n1awn



7V DANTTAN DWPTAIR 7W 1ARN 72 112V D11 TR N1AaNd wnnhwn? 1w 73 ,1ARNA
014 N111NN %@ 1ANN2 LYIYY N1 ,NNATTY7 .0N2AIW 11" T DT'N 221 Ninn T
TANNL IN ,N11INN AT YW 01787840 D'1TPANN YV N001ANY 11'NT NT'N NIYNNN]
N1 N1T N14AN 11WNMmM 17 NT1ayd .021030 7W 8141 NN 0702 7Y N1'N1a7 N111nn
12 112 .N131AN 11"7'7 9W 1ARN 112V1 07T D90 D1WPMAIN 4,500 1 7W 1NN 111y
nya 0'wnnwnn 7w 11¥10 Ny'aw NT'N DR INWA 1'2 0'IN120 0'a'Pn 010 1121y
LN1UNTIVO WI1A™N NV'W NNIY7 NITN1'T N1an DIYNNARD DNINW NDINwn yiNa

AT NTIAY YW 1TVI90 2900 W 2 P1ad Ny NINYNN NINNINN

:DN21N DINNNA TND11A AT 2718 NINNIN
Dynamic maps for exploring and browsing shapes.
Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-0Or.

Computer Graphics Forum (SGP), 2013.

DynamicMaps: Similarity-based browsing through a massive set of images.
Yanir Kleiman, Joel Lanir, Dov Danon, Yasmin Felberbaum, and Daniel Cohen-Or.

In Proceedings of the SIGCH/ conference on Human factors in computing systems,
2075.

01100 1170 N1YNNANA N131AN 12 11'nT 3

V111 11172 ,1"'017N7 7W1IN0 N1NW N111NN 172 71'NT 21WN7 NWW 01NN 1IN AT P1a)
1N .N7N1YN N1INNNW wWiin 17'aN1 N21NY% I8N yT1In 02 102 ,011n0n wpnn
DN1TR™T YN N11IX DNATTA L 1NW92 UPT1AIN AN 1912 N11NNN N2 02 ,0TIPN P1aa
1IN ,INT NN .0MWNIVIN 072 7T 9V 11T 1N11 KT 21717 9799 111K 'wIN0 Wpn
N0 NIVNN 021NN PN YW N1PIaYA WINTW T 9V 90pn 1N YT Q1087 0'YNN
,N17VN 11yTN T2 71N N 722 NPT 11T DT 127 NonT 117NNl 012009
DTANN 1YW DIWT .NN7'NW Y1 YW N112127001 WATIN DINYINWA 1a0nn DT
N71V1 N11¥2 N13IAN 72 DAY N7 TN, NIWNRT AT 210N N NIN'al 011111n
NN 11N27 '™NT2 'N DY .70P7 N17W97 111 DINYIRW 210 QTN 10172 ,n77v1n1
Nnin 7y NINTIP NINY'RWN 12U8AYW VT2 WNNwn'7 1011 TX21,AN7NY 731 D13nnn

.2N17 N177V1N NINYRW N111Y

N{?170 NINYNW Yy NDD1ANW NW'W D'A¥N1 L1798 N1YRW "NWY N121WN 07a0N 11X
.x12p k2 n11inn n YW Q0IN PN nn'wnin n7vIn 7npn Yy .(clustering) mx1apY
W nynun T 9y 11'NTA DTN W TDANTA 11aW7 DIwNwn np1nn NINNIN
NINNIN] D1WVP911P NON1A 1T VAWV . 71N TR'NN 2NN (embedding) n'vpP1aIND
1IN 12N ONNRY .D'WAINIP1 N1APY TN DINIIY ]2 VTN DN DTNNNAT DINY'RWN
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n7wpo 2K N9 RIPI IWN WTN 2100 ANRNN 0D717TAN 1R .(N11X2 T
NX11pP7 DRNNY 2127 yupn 91 11 nNRNNA . (Ssymmetry aware correspondence)
NN¥NY N2 N7 QU D'ANND 1IN 13 1N .0TIWA N1INQ DTIVUNT0 D'WUPN
NIMI¥ 172 NIANRNA 21WNY N1IMAINN N12AXT N DN DIIN1Aw AT 2100 NINRNN
NINNNN 119'WY wnw'7 N17127 0'YVPNAN 172 D1MVNT0 NINRNNW O'RIN 1IR .N17VN0

.0YVPNN "2 N2V TN-TN NARNN DNTXN 771¥ 897 D171Y 1'2 N1a1ay

NNNDN .07972 12 ANNDN N1Y2 NWynY 11NaY% w1 ,07upn 172 DINRNN NINNY 1712
NINRNNA NI1T2NA N1T1Ayn YW 12171 N L2271 1PNN 12 7Ivaw AN0 RW11 R 0187 7'
N1an wAT1 ,71V7 1ININW N1V'Wn 112y .0'217-TNN W DINRNN 1IN D12y TN-TN
N1W NNNNN DWATI,N171Y 172 0127V PNON 1Y 112y ,0NATTY .AN1T 22710 NRRNN
-0717 210N 00N N ,N1IWN N11N2 0'P70 NN2Y% 0DRNNY WY (N111¥N 'Nw1) pon 92
Nyl 717NAaY% 11°8% N1MIRT N1R1AN 119712 198 N1T1ay L7732 0W7 .00 D18 07219
spectral ) n"97VPAD NNRNN NVW YW D'ATY 1IW D1ANND 1IN (DA 1'2 ARARDNN
178 D'NNTIAIN .08 1'2 NINRNN 21WNY AN181 W RNW (correspondence

AT NTIAY YW 1Tvi19n P7Nnn 9W 5.3 1 4.3 077701 D'w11an

Nn1"N1'T N1an 1711 7Y 11'"N0T 001N VIVW 2

minn "MaNN NpoY avw |, (Dynamic Maps) ni1721'7 119/ D1A18N 118 N1 P1Aa
12 D'PNIN 11D VWY BVYPN IANND DWPMAIND 2 1'NTA Y No0ANNw
N171¥ ,N111NN2 121N DN 12 ,1ANN2 DIWPTAIND 7@ DN1ANT D131NT DTWPTAIND
NANTNAN N11INANN .03NN 7"y AX117 N7 IWNR NN UPTAIN 73 N ,ND1TTR'T NYN
1"2 DY 0NN DIWT IN172]) NN1T0 N 124 YV N1A101°R NN 1T N4Ana N1nTion
-D1T1 1"'N-D1T N171va1 (pan) 11112 2% n7ma 17 Yy vIvWwWY nanan ,(ninnn %2

.WIT1 NIN 12W VA2 27 N1 Nand N7V 721,071 T1 04N NN Nann LVIRN

2127 N7 10712 71'0TNT, TINND D124 TR'N D'WPTAIN 10 N17TR™T D70 N11INT N131AN
N1IX 1IN N131NN 7w 192191 11970 723,127 .81 7T 1T 2NN IR ANT'A N1RY
nniy'y ,n1"natT N1ana .0'pon 1IN 014'%7 DI'NW 011N 77277 27N DTN 1T nany
1NWY 1N ,N771171 N4An 7y 001210 K71 1A¥Y 1191 N1 N4AN1 N7V 7231 INRN ,NNT
NNTIY ,WNNWNn 111y .01APY 2NN Nannw! "1pn 1aiR1 9181 10T 'R0 71w 12 7Y
n'21171 Nan NNMPW NN AWINNN ,NAann 10 VP P70 NN 981 890 1111 vial 732
nian YW q011 71NNT .Ap7Nn1 NaNd vIvIW NN NIN1 31 ,'N7U0 NP71 21NNy
1I¥IW 12 ,N4an1 v1v'Wwn 111727 NANIN D131NNN DR D'RNNT7 D1NWANRD N D1NATT
0111WN DM1TNN 12 00N 1NAW N1'721%91 N1anY T1A4712 ,7N17 210 AN1'N wnnwnn

.WNIN 0'2N211 nana

,AYYNY ANNAW DVPIAIND 190N N170 N7 ,027 N177Y12 N1N1TT N1an 1117 1Nt
.207TNN N1WITIN N11INNN N1'YYY WTPIN N4Ann N1 T2 N1 "Niynwnn P7nn
1117970 0712100 DTRIXY N111INN 1ANND N1'P0Y% wnw'Y N17127 N1TN1TT Dany NN
D'VINYNN "2 11'NTN 21WNN 1'V19N7 PN1IN Nann NN DNTI1AYN L,12 1N] .N1A1AN
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78PN

nnTpn 1

07¥1411 07174 D107 1240 D'UYINT DIVP 1'NW DTN D70 DW0PT1AIN W D1IANND
0771710 1240 0N ;NN 7713 1702 X NN1T 77700 112V N1317N MARAD ,DNN1YY .non?
,NT77Y71 0127177 W12720 NIN 127710 0DTANRNN N11'AT .01 72121 071711 0'AINYY D'X14a11

.N17TN™ D70 N1INT N131AN YW DTANA NP0 112INY NTATWINIYINRT DITNN

N1IX IN D130 YW 09174 D'a0IN 11N UJA0 771727 YW APNnNa NT2NN 1T NT1ay
NIMIWAaN N1'¥P1YaN DA 1N ,70IN0 11'NTA 7W 1INTTTNA 011111yN 12X .01 TN NN
AN J11AN% 0702 N1INN DINTT D1IY IR DIRTT N131RN 10T .AT 2100 11'NT DT 9w
N17INT N12IAN 1ARN NP0 L (retrieval) n1niN1 Nainn DN'YN 1142, 0w 9w
1IN ,N17INT N131AN 1AND D7P0 INY N1Mwpy 1n%w np1om | (exploration)
"2 Nt 9y nooannw aww |, (Dynamic Maps) nini'T nian nyNn
NNan N17'121 170 K97 072171 DTARNL 12WINIVIR V1LY DIwannt n1x\niimnn
n1MIX\N1INNN "2 1" TAY 21wN ,N1a011 N1'¥PYaN 11,17 AW 111y 11170 1IN
,19W 1100, VPN WIN'WA T 1122 ,N01¥7 1IN N11INNY WY 1IN0 vTn qpwr
D7117aNN Yy 11717 N1002NN 11'NT 21WNY N1MI2TY DWW ,ONRT Oy .TIV1 1N1pN

.1INT] 'WIN0 VTN N1apwn N71 07NN

NIV'W NY DA¥N 1IN ,7VIN0 YT'N NIAYWNY 11T NTTTNY N1Y'w1 111NN 0'WY1IN
ny¥n1 , (crowdsourcing) 011NN 11PN 9y NDDANN NIIWNRIN .'WIN0 11'NT NT'TNY
NINYINWN 120N NN 1'UPNY 721 ,AN7'RW 700 17 v 2'an7 10" naw 7218wn T
01 1WN WIN0 VTN N1717 1WaRn 02110 11PN wWinwn .70p7 niYwH waTiw
IN JAN 1NIN 7T2 17171Y IWNR DN1IRN 92 11077 90N ,0nYy 171¥n IR 01109 yvinn
n7n N1NIX 12 "WIN0 N1'NT DTTIN NWA AVIWD .ON1T N2°107 DMWY 0Nan
1"2 ANRNN2 Wi T 9y .N111¥D N122710 10N 0'P9%0n RNWA T 9y D1TRn
mw1Ta (transformations) mipnyn 198 7vn% 1071 ,n71X 9221 01wn 0pYNN
niiyn o Jw 23va 20712 DN DTN 1IN .NTWY DR NTIY 71an97 nan Yy
1 NTY WA At pnan L9710 nipnyan YW mM%yn 01302 (Shape Edit Distance)
,(112N 11'NT W NN1T WINTY 1N nWYIW DI1TIX 172 21717 12W) DN W win'win 10T

1PN DIIN ANIN YW DI D127V 9W DIRNIND AW D1 12 710791

NNIX ¥ np17n 1'2 0N NNA1T N11AN DX "2 N2"va 2NN %W 21w'nn T
7w T107 12271 110 1770 N1'YyaN DW17W .N17IN 12 117071 N11IX 172 ANNDN,D'YVUPnY
.NNXY 1191 Pnyn1 17 1PNNY N21T 10N DNR 721, (shape analysis) n1nixn apn oinn
,7Wn7 .NINKRY VP21 wnw'? 7127 10N DNN 7W 174a1,N1'vaN 12 PTN WP 079 ,NNT DY
0'YupPn? nP17nn ,0yupen n1INN W Ap17n 1IN wnw 21271 01IND PN A nT
A1W™M7 wnwY n12 N1ININ 172 ANRNNT,N171¥ND 12 ARARNN 21w I8 wnw'y 07127
9w npP17n 1"21 AARNN 12 WPn DR 11PN 02'Wnn 1IR .N1IND 172 'wan0 11'NT
12 Nal1ax ANRNN 21W™2a 1TY7 N1'Y 2212 0'yvpny ap1n TN 0NN, N1NIN
%1 9w NPT ANRNN Dpaion 1naw ,point-to-point correspondence) nimy
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nwynn

.N121NN 1721 N1PTA'A N0 NN 172 70an0 11" T ARINn DN 0PN 128 ,NRT NT1aya
.077TN'N NN DWPTAIN 1237 03 90 11NN 72 N N131A09% 0N™N1 NIN2QD NIRPDA)
1"2 00N NNTA 112 ,N120 N1¥PT7AN] 17112 ]AN N10 ND12IAN 12 1NTA DTN
QANNL VIVIWT 1ANND NINTI0N N1I1NAN DRNAD L, N1M1AVPY 10%W np1on ,n1amnn
IWN NN TIANNL VIV NWTN NUW D8N 1IN ,NAa011 N1¥P1IaN] .N111nn
72 ,N11¥P NO0N Nan "2l Yy N13INN 0NN 1IN .N131n0n 172 1'nTa %Y Noolan
DWVIYNW 1221 11171 727 Nanld VYWY 1N 177 1T DINIT 1270 Nana N1217p N13INNw
N77Y1 N0 NN .0PINT NATWINIVIN V1YW DTN NI 72 .N7873INA Nan "1 9y
1117771 YW TN1'N2 077171 0ANND 112V DA D'WIN'W N'TNW 72 ,1ARNAN 7T122 N17N N9

.n11Inn

N211 NTIN2 N1170 117NAN D13, 777 117INW DINN D'WINTW 112V1 1T N¥P1YaN 111y
NN qPWY N111INNN 12 2WINnn 11'NTA %Y .N13NNN 12 11"1Ta YW nTTAN N12'R]
12 9V .70IN0 11'NT N172 ,0TN 112 1T 7Y 12T0INTYINR JAIN 10712 0anan 11'NTn
0711 0DMPNAY L11'AT 21WNY NIN1P NIV 1AW NN %Y PNyn pnna 1IN 0mp
N7 123711 "VIN0 11"NT N1747 N1 TX1] 012NN 1IN, ]2 11INY 'VIN0 IWpPn NINTY)
.(crowdsourcing) 01N NP™N NP 12V WIN'W 1T 9V 'WNIVIN 19181 21w 1N
NYIW7 NNYWnNl wWnNw71 n1inny 11NN 'WiN0 1Wpn Pa07 N17127 AT 1100 Nvw

LD1UNIVIN 11T 21w

712y1 ANy .N1TA™T NN ND11IX 12391 N12IRN 227 21w TN 9PN 979 1INKRn
,(segmentation) o'wwvpny N7y YW nPIYn .Ta%1 N1TTAA NYN DININA Tpnnn
2j7NN% D217 1NN DNN 721 ,01N02 NNaN N17Y2a 1270 N1 172 717271, N171X 172 ARRNN
1NN NNR 9w 1v74a1,1790 N1'Yan 12 PN WP 07 ,NONT OY TN .ANXY 1141 Pnyn
MNP0 7T 9V D1IX 12 710 T DTTIN AWN NVW D'A'NN 1IR .NONRY V9P] wnw'y 7121
1"2 DT'VIND D'ONT NApWwn 1T 11"NT DTN .0'WUPNN 1'2 NNRNN NN™NAT 0'YUPNY

.AN1T 171van 71TW NININ IR 112200 1NIRY D1277WN D1IX 1122 DN

DINTNT ,DWYPUPNRY INP1%N 121 D1NIX 12 AARNN 12 WpPn DN 11PNY 0'127WNnN 1R
Npaon 1naw) NN 12 N1a1aY NIARNN 11a'W7 wnwy 02127 0'ywupny np1n 181
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