
The Raymond and Beverly Sackler Faculty of Exact Sciences
The Blavatnik School of Computer Science

Semantic Similarity and Correspondence

of 3D Shapes and Images

A thesis submitted toward a degree of
Doctor of Philosophy

by

Yanir Kleiman

August 2016

The Raymond and Beverly Sackler Faculty of Exact Sciences
The Blavatnik School of Computer Science

Semantic Similarity and Correspondence

of 3D Shapes and Images

A thesis submitted toward a degree of
Doctor of Philosophy

by

Yanir Kleiman

This research was carried out in

The School of Computer Science

under the supervision of

Prof. Daniel Cohen-Or

Submitted to the Senate of Tel Aviv University

August 2016

Abstract

In this work we investigate the concept of semantic similarity between

shapes and images. Similarities between elements can be used for numerous

applications, such as clustering, categorization, visualization, retrieval, and

browsing. For shape and image browsing, we present a novel exploration method

which relies on the similarities between elements to produce a seemingly endless

grid, which can be navigated in any direction like a regular map. This provides a

smooth and intuitive browsing experience. Our method is efficient and highly

scalable, and can be used for datasets that contain millions of elements.

For all of these applications, the quality of the solution depends strongly

on the quality of the similarity measure. Similarities between elements must

reflect the perceived similarity by humans, or the semantic similarity. This

motivates further research to improve existing similarity measures, which often

lack semantic context. First, we show how crowd sourced data can be used

to deduce complex semantic similarities between shapes or images which are

not possible to compute automatically without external knowledge and context.

Such methods can be used to complement automatic methods and provide

additional external context.

Next, we focus on the shapes domain. Shape segmentation, correspondence

between shapes and semantic similarity are some of the pillars of shape analysis,

and each of these problems enjoys extensive research of its own. However, these

problems are linked together, and the output of one can be the input of another.

Similarity of parts can be used to discover shape segmentation, segmentation

can be used to compute shape correspondence, and correspondence can be used

to compute semantic similarity between shapes. We present a similarity measure

between shapes which is computed by segmenting and finding a correspondence

between the segments. This similarity measure captures semantic relations such

as shapes that belong to the same style, or have a similar function.

We further investigate the link between correspondence and segmentation

of shapes, showing how segmentation of the shape can improve point-to-point

correspondence. When matching shapes which contain symmetries, there are

multiple contradicting solutions to the correspondence problem, which often

cause instability of the final solution. To alleviate this problem we propose a

symmetry aware correspondence, in which each segment can match several

segments in the other shape. This enables us to find a matching between

symmetric segments in a very efficient manner. The symmetric matching

between segments is less detailed but more accurate than non-symmetric

methods, and it can be used to improve point-to-point correspondence even

without providing a one-to-one mapping between the segments. Furthermore,

resolving the symmetry can potentially be done as a post-process which is

decoupled from the matching and thus less complicated.

Acknowledgments

I would like to thank my advisor, Daniel Cohen-Or. There are no words to

summarize five years of working together. Danny always treated me as equal

from the very beginning, pushing me to bring forward my own ideas rather

than following the herd. He had enough patience for me to follow through on

ideas that worked as well as some that didn’t. He taught me the importance

of collaboration and introduced me to many great people, some of which are

mentioned below.

I thank all of my collaborators: Oana Sidi, Oliver van Kaick, Hao (Richard)

Zhang, Noa Fish, Joel Lanir, Shmuel Asafi, Dov Danon, Yasmin Felberbaum,

Olga Sorkine-Hornung, George Goldberg, Yael Amsterdamer, and Rachele Bellini.

Special thanks to Oliver van Kaick, whose help was instrumental for some of the

works detailed here.

A few people were gracious enough to host me in their labs, and show me the

most fun part of doing research - traveling the world. My thanks to Olga Sorkine-

Hornung, Tobias Ritschel, and Baoquan Chen. I would like to specifically thank

Maks Ovsjanikov for hosting me in his lab during the last year of my PhD, and for

his help and patience. Chapter 5 of this dissertation could not have been written

without him.

Tel Aviv University will always feel like home to me; I spent about 9 years of my

life between these walls. I would like to thank my labmates Noa Fish and Hadar

Averbuch-Elor, for friendly advices, collaborations, and loads of fun, including

McDonalds every Monday and a farewell t-shirt that I will never wear in public. I

also thank Ronit Reitshtein for helping me with all the paperwork I needed help

with.

My family supported me in every way throughout my studies, letting me skip

holiday meals and birthdays for deadlines, helping with the kids when I was away,

and even running errands in the university when I was abroad. I am grateful for

everything.

Finally, I would like to thank Hedva, who held my head above water when

everything seemed impossible. This work is as much yours as is it mine.

Table of Contents

1: Introduction 1

1.1 What is Semantic Similarity? . 2

1.2 Applications of Semantic Similarity 4

1.2.1 Image and shape retrieval 5

1.2.2 Relevance feedback . 6

1.2.3 Embedding . 7

1.2.4 Clustering . 8

1.2.5 Categorization trees . 8

1.3 Similarity Based Browsing with Dynamic Maps 9

1.4 Semantic Similarity from Crowdsourced Clustering 10

1.5 Semantic Shape Similarity Using Shape Edit Distance 11

1.6 Symmetry Aware Correspondence Using Shape Graphs 12

2: Similarity Based Browsing with Dynamic Maps 15

2.1 Image Browsing . 15

2.2 Dynamic Maps . 16

2.3 Related Work . 18

2.3.1 Image browsing . 18

2.3.2 Shape browsing . 20

2.3.3 Relevance feedback . 21

2.3.4 Planar Mapping . 21

i

2.4 Map Generation . 23

2.5 Interface Enhancements . 25

2.5.1 Zoom levels . 25

2.5.2 Focusing on an image . 26

2.6 Datasets and Implementation . 27

2.6.1 Shapes . 28

2.6.2 Images . 30

2.7 Evaluation . 31

2.7.1 Shapes . 32

2.7.2 Images . 35

2.7.2.1 Results . 36

2.7.2.2 Discussion . 39

2.8 Conclusion . 41

3: Semantic Similarity from Crowdsourced Clustering 43

3.1 Related Work . 45

3.2 Algorithm . 47

3.3 Experiments . 50

3.3.1 Crowd Experiments with Ground Truth 51

3.3.2 Crowd Experiments with Real-world datasets 53

3.3.3 Synthetic Experiments . 56

3.4 Conclusion . 59

4: SHED: Shape Edit Distance 61

4.1 Related Work . 63

4.2 Shape Edit Distance . 66

4.3 Part Matching . 70

4.4 Distance Formulation . 75

4.5 Evaluation . 78

4.6 Conclusion . 83

ii

5: Symmetry Aware Correspondence 85

5.1 Related Work . 88

5.1.1 Segmentation and shape graphs 89

5.2 Consistent Segmentation . 90

5.3 Symmetry Aware Matching . 91

5.3.1 Formulation . 92

5.3.2 Sparse spectral matching . 93

5.4 Evaluation . 96

5.4.1 Qualitative evaluation . 96

5.4.2 Comparison to BIM . 97

5.4.3 Point-to-point maps . 99

5.4.4 Symmetry detection . 100

5.4.5 Matching of feature points 102

5.5 Conclusion . 102

6: Conclusion 105

6.1 Summary of Contributions . 105

6.2 Future Directions . 107

References 109

iii

iv

List of Figures

1.1 Similar images with low pixel-level similarity 3

1.2 Images with basic semantic similarity 4

1.3 Images with high level semantic similarity 5

1.4 Images within context . 5

1.5 Image retrieval example . 6

1.6 MDS embedding example . 7

1.7 Clustering example . 8

1.8 Categorization tree example . 9

2.1 Browsing images using a dynamic map 17

2.2 Screenshots of typical browsing sessions 17

2.3 Dynamic maps: fill order . 24

2.4 Dynamic maps: zooming out . 25

2.5 Nearest neighbors of shapes . 28

2.6 Nearest neighbors of images . 31

2.7 Average search time in DM and RF 34

2.8 User interaction in different zoom levels 38

3.1 Image descriptors vs. crowdsourced queries 43

3.2 Clustering interface . 44

3.3 Accuracy of nearest neighbors using our algorithm 52

3.4 Font clustering accuracy . 53

v

3.5 Example font clusters . 53

3.6 Image retrieval results for chair . 55

3.7 Image retrieval results . 56

3.8 Mutual queries visualization . 58

3.9 Accuracy for varying parameter values 58

4.1 Shape edit distance . 62

4.2 Semantic segmentations vs. nearly convex decomposition 67

4.3 Embeddings of vases using LFD and SHED 69

4.4 Matching between shapes . 74

4.5 Categorization trees . 79

4.6 Evaluation of categorization trees 79

4.7 Clustering according to SHED, LFD, and SPH 80

4.8 Evaluation of clustering . 80

4.9 Shape retrieval results . 82

4.10 Precision-recall on sets of articulated shapes 83

4.11 Embedding according to SHED, LFD, and SPH 84

5.1 Symmetry aware correspondence overview 86

5.2 Symmetry aware correspondence between shapes 97

5.3 Matching shapes with non-isometric shape graph 98

5.4 Comparison of Symmetry Aware Correspondence to BIM 99

5.5 Examples of segment-level symmetry detection 100

vi

List of Tables

2.1 Comparison of ratings of the two interfaces 34

2.2 Direct preferences between the two interfaces 35

2.3 Number of unique and non-unique images seen and task comple-

tion time . 37

2.4 Participants ratings . 39

2.5 Participants preferences . 39

3.1 Real-world dataset results . 54

4.1 Learned weights for different sets of shapes 78

5.1 Comparison of Symmetry Aware Correspondence to BIM. 101

5.2 Evaluation of point-to-point maps. 102

vii

1 Introduction

3D object repositories have gone from being small and scarce to large and

abundant. Image repositories have seen similar growth but in a different scale;

they have gone from being large to massive, and from abundant to omnipresent.

The abundance of large collections increases the demand for efficient, reliable

and intuitive ways to organize and explore shapes and images.

The main focus of this dissertation is the study of semantic similarity within

large collections of shapes or images. We are interested in measuring semantic

similarities between objects, as well as the applications of such a similarity

measure. Detecting similarities between shapes or images is a core component

of a broad range of tasks, such as retrieval, exploration, categorization, and

classification. For shape and image exploration, we propose Dynamic Maps, a

similarity based browsing method which enables intuitive navigation through

large collections without relying on keyword search or filtering. This application,

as well as the many tasks mentioned above, can greatly benefit from a similarity

measure which reflects semantic information regarding the shape or image:

the function of an object, its origin, its location, and more. However, many of

the state-of-the-art similarity measures are feature driven, and do not reflect

semantic information well.

Motivated by the necessity of similarity measures that incorporate semantic

information, we present two methods to measure semantic similarities. The first

relies on crowdsourced data, and suggests a querying scheme which gains a lot

of relevant information from each query, thus reducing the necessary number of

crowd queries. Using crowd queries enables us to capture semantic information

that might exist outside of the image or 3D object, such as identifying paintings

by the same painter or objects that belong in the same setting. The second

method measures semantic similarity between shapes by comparing the parts

that each shape is composed of. Using the correspondence between parts, we

1

can estimate which transformations are necessary to transform one shape into

the other. We define the shape edit distance as the sum of these transformations.

The shape edit distance is sensitive to the function of a shape and its origin.

The derivation of the shape edit distance demonstrates the relation between

segmentation, correspondence, and similarity of 3D shapes. These three

problems are some of the pillars of shape analysis, and each of them enjoys

extensive research of its own. However, these problems are linked together, and

the output of one can be the input of another. Similarity of parts can be used

to discover shape segmentation, segmentation can be used to compute shape

correspondence, and correspondence can be used to compute semantic simi-

larity between shapes. We further investigate the link between correspondence

and segmentation of shapes, and show how the segmentation of shapes can

help the computation of a point-to-point correspondence between them. We

introduce symmetry aware correspondence, in which each segment can match

several segments in the other shape. We present an efficient and stable method

of computing such correspondences, which alleviates the inherent instability

of the optimization when symmetric shapes are being matched. We show that

the symmetric matching of segments can be used to improve point-to-point

correspondence even without providing a one-to-one mapping between the

segments.

Finding correspondences between shape parts involves solving a graph

matching problem. Graph matching is a heavily researched area, however most

existing work focuses on one-to-one or one-to-many matching. In the methods

above, we require a more complex structure of correspondence. Therefore,

these works include notable contributions for the graph matching problem.

We introduce two adaptations of spectral correspondence, a prevalent graph

matching method. These adaptations are detailed in Sections 4.3 and 5.3.

In the rest of this chapter, we elaborate the discussion of semantic similarity

and its applications, and of the contributions mentioned above.

1.1 What is Semantic Similarity?

We say that two images or shapes are semantically similar when the similarity

between them is based on high-level concepts rather than low-level represen-

tations or features. Below we give examples of similarity measures with low

semantic level and high semantic level. We categorize similarity measures to

2

three groups: non-semantic, basic semantic and highly semantic. However, this

is not a mathematical concept which can be defined in exact terms, and other

categorizations are possible. We claim that highly semantic similarity measures

are more accurate in practice and more useful than similarity measures with low

semantic level, as demonstrated in the following chapters of this dissertation.

Non-semantic similarity. Non-semantic similarity measures depend heavily

on the low-level representation of the object. The similarity between images

is measured by directly comparing their corresponding pixel values, and the

similarity between shapes is measured by directly comparing their vertex

positions. Thus, such measures can only capture similarities between images

or shapes which are almost identical. In Figure 1.1 we show similar images for

which the values of each pixel are quite different. Such images would not be

considered similar by a non-semantic similarity measure.

Figure 1.1: Similar images with low pixel-level similarity

Basic semantic similarity. The basic semantic information in an image or

3D shape are what type of objects they depict: a flower, a bee, a human face,

a mountain or a sunset on the beach. For images, image descriptors provide

a higher level representation of the image, and can sometimes capture such

semantic meaning. Simple descriptors can identify similarities in composition

and color palette, while advanced descriptors can also estimate the context of

a scene, or the type of content in the image. In Figure 1.2 we show images that

have semantic similarities that can typically be captured by image descriptors.

3D shapes are less prevalent and less studied than images. Still, state-of-the-

art techniques are mostly capable of identifying basic semantic information such

as overall shape (comparable to the composition of an image) and the category

the object belongs to.

3

Figure 1.2: Images with basic semantic similarity

Specialized methods can also recognize semantic similarities in specific

contexts. For example, identifying the similarity of different photos of the same

person, photos of the same city, or the same 3D model in different poses.

Highly semantic similarity. Highly semantic similarity is derived from a

broad semantic context, which may include elusive relations such as a similar

emotion or sensation evoked by images (e.g., images that convey “fear” or

“comfort”); shapes which are semantically related (e.g., different types of musical

instruments); likeness between the photographed people; paintings by the same

artist; or shapes that are modifications of the same base shape. These relations

are quite often external to the image or shape itself; they come from common

knowledge or experience, and thus cannot be deduced directly from computed

features. In Figure 1.3, we show images that have external high level semantic

relation to each other, as they were painted by the same artist.

Note that semantic similarity also depends on the context of the image, and

on personal taste. Within a given context, for example in Figure 1.3, some people

may decide that images (a) and (b) are more similar, while others may decide

that images (b) and (c) are more similar. These decisions may change within a

different context, such as the one given in Figure 1.4.

1.2 Applications of Semantic Similarity

In this section, we briefly describe some common applications of similarity

between shapes or images, which motivate our search of highly semantic

similarity measures.

4

(a) (b) (c)

Figure 1.3: Images with high level semantic similarity

Figure 1.4: Images within context

1.2.1 Image and shape retrieval

The most prominent applications of similarity are image retrieval and shape

retrieval. The input of this task is a single image (shape), and a large collection

of images (shapes). The goal is to retrieve the items in the collection which are

most similar to the input. In Figure 1.5 we show examples of image and shape

retrieval. The simplest way to perform retrieval is using a k nearest neighbors

approach, and output the k elements in the collection which have the highest

similarity to the input, according to the similarity measure. A non-semantic

similarity measure can retrieve elements with low-level similarity to the input,

if such elements exist in the collection. However, most often such elements do

not exist. A semantic similarity measure can retrieve elements with high-level

semantic similarity to the input as well, leading to more relevant query result,

especially when k is large.

5

Figure 1.5: Image retrieval using image descriptors. Each query image
(marked in red) is displayed with its 9 closest matches, from left to right
and top to bottom. The images are taken from a dataset of one million
images.

1.2.2 Relevance feedback

Since in many cases the distinction between a relevant and irrelevant result is

user subjective, relevance feedback techniques were incorporated into many

retrieval systems, allowing the user to guide the search according to personal

preference and taste [Rui et al., 1998; Leifman et al., 2005; Cao et al., 2006; Akgül

et al., 2010; Suditu and Fleuret, 2011]. Relevance feedback involves presenting

the user with a set of suggested items. The user marks the preferred or relevant

items, and presented with items which are similar to the selected ones. The

process may then be repeated several times until the user is satisfied, often

employing machine learning techniques in order to aggregate and refine previous

selections. Still, the basis for learning is the core similarity measure between

items in the collection, and a semantic similarity measure is more desired than a

non-semantic one.

6

1.2.3 Embedding

Another important application that benefits from a reliable distance measure

is mapping a set of shapes or images onto a low dimensional manifold. This

mapping can be used for visualization or as the basis of many machine learning

algorithms which involve dimensionality reduction. One of the most prevalent

methods for dimensionality reduction is multidimensional scaling, or MDS [Sam-

mon, 1969; Kruskal and Wish, 1978]. MDS takes as input the distances between

elements and seeks an embedding in which the difference between the input

distances and actual distances are preserved. The only input for the process are

the distances between elements. Thus, for a useful embedding it is crucial to

have an accurate similarity measure. An example of MDS embedding of a set of

shapes is given in Figure 1.6.

Figure 1.6: MDS embedding obtained from SHED for a set of vases. Note how
similar shapes are grouped together.

7

1.2.4 Clustering

Clustering is a useful way to organize data, either for visualization or for further

processing which relies on the common properties of the elements in each

category. Most clustering methods rely on some similarity measure between

elements in the collection. A well known method is k-means clustering, in which

every element is classified to the closest of k centers, or the center with the highest

similarity to the element. To measure this distance, a reliable similarity measure

is required. Other advanced methods (for example, spectral clustering [Shi

and Malik, 2000] or diffusion maps [Coifman and Lafon, 2006]) perform some

manipulation or scaling of the original similarity space, but still can only be

effective if the similarity measure is adequate. Figure 1.7 shows an example of

clustering based on semantic similarity.

Figure 1.7: Clustering of a set of lamps according to SHED.

1.2.5 Categorization trees

By using hierarchical clustering, we can create categorization trees for a set

of shapes or images. The resulting trees hierarchically organize the elements

of the set and can be used for shape or image exploration. The trees can

be generated automatically by using a non-parametric clustering method, in

which the number of clusters in each set is selected automatically, such as Self-

8

Tuning Spectral Clustering [Zelnik-Manor and Perona, 2004]. An example of a

categorization tree of shapes is presented in Figure 1.8.

Figure 1.8: Categorization tree of a set of vases according to SHED distances.

1.3 Similarity Based Browsing with Dynamic Maps

For image and shape exploration, we introduce an intuitive browsing method

which relies on the similarities between elements. Thumbnails are laid out

on a grid which can be navigated like a geographic map, using pan and zoom

operations. The grid is continuous and dynamic, with each patch generating at

the moment it is needed. Images and shapes are high dimensional objects

and the similarities between them cannot be accurately captured in a two

dimensional space. Thus, any global mapping of images or shapes onto a

two dimensional grid is bound to have discontinuities. However, the dynamic

generation of the grid, which does not produce a global mapping, ensures every

patch is locally smooth while the map remains coherent. This provides a smooth

browsing experience for the user. An additional advantage of dynamic maps

9

is their ability to adjust to the direction of browsing, thus better reflecting the

user’s interest. Dynamic maps are efficient to generate and are very scalable.

Thus, they can provide an on-line experience and support on-line changes to

an underlying dataset of millions of elements. For a detailed discussion and

evaluation of dynamic maps, see Chapter 2.

The work in this chapter was published in the following two papers:

• [Kleiman et al., 2013] Dynamic maps for exploring and browsing shapes.

Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-Or. Computer

Graphics Forum (SGP), 2013.

• [Kleiman et al., 2015a] DynamicMaps: Similarity-based browsing

through a massive set of images. Yanir Kleiman, Joel Lanir, Dov Danon,

Yasmin Felberbaum, and Daniel Cohen-Or. In Proceedings of the SIGCHI

conference on Human factors in computing systems, 2015.

1.4 Semantic Similarity from Crowdsourced Clustering

In this work, we aim to compute a similarity measure which is completely

semantic, driven by the context of a shape or image, as well as external

information and even the emotion it evokes. Such context cannot be discovered

by automated tools. Instead, we propose to gather information from a crowd

using a crowdsourcing technique. Our goal is to quickly converge to an accurate

similarity measure, while minimizing the cost, which depends on the number

of necessary queries and their complexity. There are two main challenges in

developing such a crowdsourcing technique. First, how to compare images in

an efficient and useful way, i.e. what type of queries should be asked. Second,

which images to include in each query, and how to use previous queries to better

construct future queries.

We answer these two questions and present a method based on clustering

queries. Users are given the task to cluster n images into k bins. We then use

the clustering results to gradually improve the similarity measure by embedding

the objects in a low-dimensional space. This embedding resolves conflicts in

the query results and consolidates all of the provided information into a single

coherent space. Then, new queries are created based on the embedding and the

process is repeated. The resulting similarity measure can complement descriptor

10

based methods, for example to compute semantic similarities for a fraction of

the dataset and propagate them to visually similar images. The method and its

evaluation are discussed in details in Chapter 3.

The work in this chapter was published in the following paper:

• [Kleiman et al., 2016] Toward semantic image similarity from crowd-

sourced clustering. Yanir Kleiman, George Goldberg, Yael Amsterdamer,

and Daniel Cohen-Or. The Visual Computer, 2016.

1.5 Semantic Shape Similarity Using Shape Edit Distance

In the shapes domain, current similarity measures mainly focus on distinguishing

shapes from different classes, and give little attention to intra-class similarity.

State of the art techniques are based on the appearance of the shape as a whole

and capture low level similarities between shapes. These methods do not capture

well similarities between articulated shapes, partial shapes, or shapes with

changes of scaling of the parts; they lack the necessary semantic level to identify

shapes of similar function or style.

We develop shape edit distance, a similarity measure which captures the fine

details of the shapes, as well as the overall structure of the shapes. We aim to

measure the amount of effort necessary to transform one shape into the other.

To this end, we segment each shape into approximately convex parts [van Kaick

et al., 2014], and find a matching between the shape parts. Using the matching

we estimate the magnitude of transformation each part went through. Thus, our

method is capable of identifying shapes of similar function or style. The shape

edit distance provides an intuitive similarity measure which is relatively close

to human perception of similarity between objects. It is useful for identifying

similar objects within the same class, as well as distinguishing between different

classes of shapes.

A core part of our approach is computing correspondences between shape

parts. Correspondence between graphs or feature points has been heavily

researched in recent years, but mostly in the context of one-to-one correspon-

dences [Leordeanu and Hebert, 2005; Berg et al., 2005; Kezurer et al., 2015] or

one-to-many correspondences [Cour et al., 2006; Leordeanu et al., 2009]. These

methods are less effective when a different correspondence structure is required.

11

For shape edit distance, we require a bidirectional one-to-many matching: a part

in one shape can match many parts in the other shape and vice versa, but many-

to-many relations are not allowed. Within these relatively flexible constraints,

there are often competing solutions with high likelihood. In such cases some

likely matches might belong to one solution and other likely matches belong to

another. Therefore, we introduce an adaptive spectral correspondence technique,

based on the popular spectral relaxation model [Leordeanu and Hebert, 2005].

Our technique iteratively improves the optimization based on previous selection

of matches. The adaptive technique gives precedence to matches that belong to

the same solution, which are more compatible with one another. The shape edit

distance and its evaluation are discussed in details in Chapter 4. The details of

adaptive spectral correspondence are discussed in Section 4.3.

The work in this chapter was published in the following paper:

• [Kleiman et al., 2015b] Shed: shape edit distance for fine-grained shape

similarity. Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung, and

Daniel Cohen-Or. ACM Transactions on Graphics (SIGGRAPH Asia), 2015.

Approximately convex segmentation, a collaboration with the author which is

used for shape edit distance but not detailed in this dissertation, was published

in the following paper:

• [van Kaick et al., 2014] Shape segmentation by approximate convexity

analysis. Oliver van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and

Daniel Cohen-Or. ACM Transactions on Graphics (TOG), 2014.

1.6 Symmetry Aware Correspondence Using Shape Graphs

In this work, we follow a similar idea of segmenting shapes and finding a

correspondence between shape parts, and use it to improve point-to-point

correspondences and symmetry detection. We create a shape graph from the

segmentation of a shape, where each node corresponds to a segment. This shape

graph provides information about the structure of the shape, which can be used

to stabilize the correspondence and rule out correspondences which are not

coherent with the rest of the shape. In particular, we use the shape graphs to

find a symmetry aware correspondence between the shape parts. Intuitively, the

12

symmetry aware correspondence allows segments to be matched to any number

of symmetric segments. In practice, groups of segments of various size can

correspond to groups of segments in the second shape, such that every segment

in the first group corresponds to every segment in the second group.

Matching shapes that contain intrinsic symmetry is a particularly difficult

correspondence problem, since there are multiple solutions which are equally

likely to be correct. This non-convexity makes the optimization expensive and

error prone, and often leads to inaccuracies in the final solution. Symmetry

aware correspondences relax the one-to-one constraints and effectively reduce

the search space. The new search space has a single stable solution which can be

found very quickly and efficiently.

Note that for many-to-many correspondences, a solution that matches every

part in one shape to all parts of the other shape is valid yet not desired. This is

unlike one-to-one or one-to-many correspondences which do not allow benign

solutions. This poses a problem when the optimization solution is not sparse,

since there is no clear indication of how many matches to include in the final

correspondence. Thus, we present an optimization method based on spectral

correspondence which produces sparse solutions, where only matches that

belong to the correspondence are associated with high values.

Converting a symmetry aware correspondence to a one-to-one correspon-

dence requires additional steps; however, we show that the symmetry aware

correspondence is useful even without producing a one-to-one correspondence,

for example to improve point-to-point correspondence solutions. Our method

has an additional application of symmetry detection, by matching a shape to

itself. While one-to-one correspondences provide more information, our solution

is significantly faster and provides more accurate correspondences than such

methods. Our symmetry aware correspondence method is described in details

in Chapter 5. The results of this work are pending publication.

13

14

2 Similarity Based Browsing with
Dynamic Maps

In this chapter we present an intuitive tool for similarity based browsing, an open-

ended exploration of shapes or images which relies on the similarities among

them. Shape browsing and image browsing have different end results, however

in practice they are performed in a similar manner since 3D models are typically

viewed as a single rendered image during the browsing. Therefore, throughout

this chapter we will mostly focus our discussion on image browsing, except the

discussion of implementation details and evaluation.

2.1 Image Browsing

Commercial tools for image browsing or image search focus mostly on keyword

search. The images are presented in a grid ordered by a relevance measure

relative to the input keywords (similar tools exist for shape browsing). While

text-based directed search can be effective for finding specific types of images,

studies have shown that image search is often more exploratory in nature

than Web search, and that browsing is an essential strategy when looking

for images [André et al., 2009; Markkula and Sormunen, 2000; Chew et al.,

2010]. Still, most commercial systems lack support for exploratory search

and do not provide means for serendipity in the search process [Hearst, 2009;

Markkula and Sormunen, 2000].

To address this gap, various research systems have looked into browsing as a

complementary tool to text-based search methods [Combs and Bederson, 1999;

Pečenovió et al., 2000]. One useful way of browsing through images is by

using similarity. Users often look for images that are similar to a given image,

15

and browsing according to similarity between images has been shown to be

useful [Rodden et al., 1999; Liu et al., 2004]. Relevance feedback (see Section 1.2.2)

is often used to refine search results using a selection of preferred images [Zhou

and Huang, 2003]. At each relevance feedback step, the user is presented

with a new set of images based upon past selections. However, the navigation

experience with this approach is not continuous and it requires the user to go

over a large collection of images and select the relevant or irrelevant ones at each

step.

A possibly more intuitive approach is to lay out the images on a continuous

navigable two-dimensional grid such that similar images are displayed closely

together. Navigating such a grid is similar to navigating a geographic map

application, thus it has an intuitive and familiar user experience. Zooming

capabilities can also be added to the navigation options to enhance the user

experience. The continuous navigation eliminates the need for explicit relevance

feedback on individual queries. Instead, the direction of navigation provides

hints to the type of results to be displayed next. The challenge, however, is the

generation of the continuous grid.

2.2 Dynamic Maps

Images and shapes are extremely high dimensional elements. Generating a

cohesive global two-dimensional manifold that preserves similarity relations

among all images or shapes is therefore challenging, if at all possible. However,

when a user interactively navigates a map-like interface, only a small portion of

the search space is displayed at a time. Our key idea is that for such navigation,

global requirements can be relaxed. Navigation is done over a pseudo-map,

where the data is dynamically organized into a local manifold, only in the region

currently observed by the user. There are several advantages to generating

a dynamic map on the fly. First, global constraints are relaxed and a locally

continuous map can be generated, in which a pair of shapes are near in the

embedding only if they are relatively close in the original high dimensional space.

Note that the opposite is not necessarily true; a pair of shapes that are similar,

i.e. close in the original high dimensional space, are not guaranteed to appear

in the same patch. Their placement in the patch depends on the direction of

browsing selected by the user. Second, the generated map can interactively

change according to the user’s interest and direction of browsing, thus providing

16

Figure 2.1: Browsing images using a dynamic map. The map displays a
region of images ordered by similarity (A). Dragging the map to the up left
corner (B) reveals new images which are similar to shapes in the dragging
direction (C).

an effective browsing experience without intrusively querying the user. Third, a

local region of the map can be generated quickly, and there is no need for a long

computation time to generate the entire map. Thus, dynamic maps can provide

an on-line experience and support on-line changes to the underlying dataset.

Figure 2.1 illustrates the navigation process in our solution. The user views a

local subset of images, ordered such that similar images are next to each other. In

this particular example, the user views a region of cars, and decides to navigate

towards police cars. Another patch of the map is revealed, and instantly filled

with similar images to the images framed by the red rectangle. The currently

displayed map can be figuratively viewed as a window that shows a local patch

of the pseudo-map. Figure 2.2 shows screenshots of our system during typical

browsing sessions.

The challenge in generating such pseudo-maps is to create local manifolds

that keep the sense of continuity. That is, the user pans over the pseudo-map

while the manifold is perceived to be continuous. We present a technique of

Figure 2.2: Screenshots of typical browsing sessions.

17

embedding images onto dynamic pseudo-manifolds, where the relative positions

of images respect only local high-dimensional relations. Relative distances

among the displayed images are not necessarily preserved, allowing for an

efficient usage of the display space and a spatially dense representation of the

images domain. In contrast with common dimensionality reduction techniques

(e.g. MDS), the end result of our method is not a global map which contains all

images at once. The generated local pseudo-maps only exist temporarily within

the viewport of the user; when the user navigates to reveal a new region of the

map, only local relations to the previous map are maintained. Navigation over

the pseudo-map enables a free-form exploration, where users can quickly and

seamlessly direct the search towards relevant models of their choice.

The generation of local neighborhoods in the dynamic map is based on the

assumption that for high dimensional data such as 3D models, short distances

are more accurately measured than long distances. We thus use only the

shortest distances between images in our dataset; only the distances to k nearest

neighbors (with k being a small positive integer) of each image in the dataset are

considered. A dense set is expected to have shorter distances, and thus more

accurate, than a sparse set, hence our method is especially suitable for massive

datasets.

2.3 Related Work

2.3.1 Image browsing

Images have several characteristics that makes image search different than text-

based search. Unlike text documents, the content of an image can be grasped

at a glance, and a large number of images can be presented to a user at once.

In image search, often the user does not have an exact target in mind [Chung

and Yoon, 2011]. Furthermore, images often lack textual cues and might have

many different meanings embedded in a single image [Layne, 1994], making

them difficult to support with only keyword-based search. For example, if the

user is looking for a scenery image to add to a presentation, the user would

not necessarily know how to phrase the search terms or even exactly which

image he or she is looking for. Moreover, images presented in the first page

of a text-based search result are not necessarily better than those presented

in the following pages. Consequently, users have to sequentially scan these

18

results spending considerable effort finding relevant images. Still, most current

systems focus on providing text-based image querying rather than navigational

support even though studies have shown that image browsing can improve

in achieving user’s search needs [Combs and Bederson, 1999; Liu et al., 2004;

Pečenovió et al., 2000].

To address these needs, some research systems focus on supporting various

browsing capabilities to enable navigating through images. For example,

browsing specific clusters of images [Pečenovió et al., 2000], browsing hierarchies

that are automatically built according to visual and semantic similarities [Jing et

al., 2012], or browsing along conceptual dimensions according to hierarchical

faceted metadata [Yee et al., 2003]. Similarly, some commercial systems added

interactive visual contentbased search methods that allow browsing by similar

shape and/or color. The “similar images” feature, allows users to search for

images similar to a certain image, utilizing relevance feedback methods.

Laying out images on a large canvas allows users to browse the images ac-

cording to some organization of their structure using pan and zoom interactions.

In [Combs and Bederson, 1999], the results of an initial query can be browsed on

a zoomable user interface (ZUI). In [Pečenovió et al., 2000], images were clustered

into conceptual regions. The user can continuously pan across this plane and

zoom in or out of any particular region. In JustClick [Fan et al., 2009], a topic

network is first generated and browsed through. Representative images of a topic

are then organized on a 2D hyperbolic plane according to similarity.

In the works above, the images are laid out according to some measure of

distance (in similarity) between them. However, when browsing images, there is

no need for an accurate representation of the original distances between images.

In fact, an even spread of images over the canvas can be more beneficial than an

accurate representation of the original geometry [Rodden et al., 1999], especially

in cases where the original data includes very distinctive clusters which may

appear too far apart for easy navigation. Indeed, the most common way to

lay out a set of images is on a twodimensional grid. Studies have found that

arranging a set of thumbnail images on a single-page grid according to their

similarity can be useful for users in an image browsing task [Liu et al., 2004].

Strong and Gong [Strong and Gong, 2008; Strong et al., 2010] employed this

idea and organized a collection of images based on similarity using an SOM-

based algorithm. Users could browse the image collection using pan and zoom

interactions. According to the authors their system could support browsing with

19

up to 10,000 images. Similarly, in PhotoMesa [Bederson, 2001], images are laid on

a large 2D grid. Users can browse through a large collection of images, panning to

browse horizontally or vertically through the image collection. Here, zooming out

enabled seeing the photos semantically grouped into preorganized categories.

The systems mentioned above work with a limited number of images and

are not scalable beyond several thousands of images. Thus, they are not suited

for large repositories that exist in the Web today. Our work builds upon the

idea of browsing images on a large 2D canvas, and the works in [Liu et al., 2004;

Rodden et al., 2001; Strong and Gong, 2008] that present similar images together

on a grid. However, we apply it to a dataset of virtually unlimited size, finding

solutions for interacting in such a large image space.

2.3.2 Shape browsing

A common means to explore large shape repositories is by searching for similar

shapes through a series of queries. The problem of searching for similar shapes to

a given query object is known as "shape retrieval". During the last two decades a

huge body of work in that area has focused on the development of various shape

descriptors and signatures to facilitate retrieval. Among them are descriptors

based on statistical moments [Elad et al., 2002; Novotni and Klein, 2003;

Kazhdan et al., 2003], distance [Osada et al., 2002], symmetry [Kazhdan et al.,

2004], volume [Zhang et al., 2001; Shapira et al., 2008]. For more information

see a survey by [Tangelder and Veltkamp, 2004]. An alternative approach was

introduced by Bronstein et al. [Bronstein et al., 2011]. Instead of global shape

signatures they compute local features such as Heat Kernel Signature (HKS) [Sun

et al., 2009], quantize them into geometric words, and use them in a bag of words

manner to discover similarities between shapes.

Shape exploration is commonly carried out by interactively navigating

through design galleries based on a parametric model [Shapira et al., 2009].

Design galleries have been used for model suggestions based on part cor-

respondence [Chaudhuri and Koltun, 2010; Kim et al., 2012] and semantic

context [Talton et al., 2009]. Vieira et al. [Vieira et al., 2009] utilize design

galleries for learning descriptive views of 3D objects, where the user supplies

the training data by selecting good and bad object positions. Another form of

exploration is presented in Yang et al. [Yang et al., 2011], where a shape space

is characterized from an input mesh and a set of non-linear constraints is then

20

used for exploration and navigation of new designs that are aligned with the

given constraints. Umetani et al. [Umetani et al., 2012] present a method for

shape exploration (in this case - furniture) constrained by physical requirements.

The user is able to focus on the aesthetic side of the design while the system

enforces physical soundness. Ovsjanikov et al. [Ovsjanikov et al., 2011] extract a

deformation model from an input shape to explore in a constrained manner the

variability within a set of similar shapes.

2.3.3 Relevance feedback

Many recent search and retrieval systems, including both image and shape

retrieval, utilize relevance feedback [Rui et al., 1998; Leifman et al., 2005;

Cao et al., 2006; Akgül et al., 2010], a method to refine search results using

selection of preferred elements. Suditu and Fleuret [Suditu and Fleuret, 2011]

presented an image retrieval system that features iterative relevance feedback for

a very large set of images. At each step, the user is presented with a set of images,

and selects a single image that is the closest match to the desired query. Then a

new set of images is displayed and the process is repeated.

While this process may be effective at filtering relevant images, the use of

relevance feedback in commercial search interfaces is still relatively rare [Ruthven

and Lalmas, 2003]. One possible explanation is that it requires users to make

relevance judgments on each item, which is an effortful user task [Ruthven

and Lalmas, 2003; Croft et al., 2001]. Relevance feedback tends to work best

when the user selects multiple objects as relevant as well as some objects as

irrelevant. However, selecting multiple objects is cumbersome for most users.

This is amplified in image search where extractable low-level features (e.g., color,

texture, shape) may not necessarily match high-level perception-based human

interpretation [Zhou and Huang, 2003]. Our method is inspired by that concept,

but operates on the implicit feedback given by the user’s advancement through

the dynamic map.

2.3.4 Planar Mapping

Generating a two dimensional map of high dimensional elements is in essence a

dimensionality reduction task. Common dimensionality reduction techniques

such as multidimensional scaling (MDS) or locally linear embedding (LLE)

21

[Roweis and Saul, 2000] create a global manifold that aims to preserve the

distances among the high dimensional data points, to the extent possible. Such

global solutions are beneficial for applications such as clustering and classifi-

cation, which rely on the underlying geometry or spread of data. However, our

premise is that for browsing tasks, there is no need for an accurate representation

of the original distances between shapes. In fact, an even spread of shapes over

the map area can be more beneficial than an accurate representation of the

original geometry of the search space, especially in cases where the original

data includes very distinctive clusters which may appear too far apart for easy

navigation.

Our dynamic map bears some resemblance to the self organizing map (SOM)
[Kohonen, 1990], a popular dimensionality reduction method that produces a

dense and intuitive grid-like structure. The grid preserves similarity between

elements without preserving the distance. However, an SOM provides a global

solution, in which local discontinuities may occur frequently. In addition, it

entails a computationally intensive training process, which is applied globally

as a pre-process, making it difficult to use on a very large dataset with frequent

updates. Our technique is local and computationally inexpensive, which makes

it a viable option for massive online datasets of images which are constantly

changing.

A number of papers use dimensionality reduction techniques to map and then

browse an images space according to the global relations among images [Chen et

al., 2000; Pečenovió et al., 2000]. In order to better organize the images, layout

methods have been applied to MDS results to put them on a 2D grid [Rodden et

al., 2001]. Works such as [Sakamoto et al., 2004; Lasram et al., 2012; Strong and

Gong, 2008; Strong et al., 2010] use SOM to visualize a given small set of elements

in a global cohesive map.

Such methods work well for small sets, however they are too computationally

intensive and globally constrained to be effective for massive datasets. Perhaps

more importantly, it is not possible to capture all of the high dimensional rela-

tions in a single global low dimensional map. Therefore, global dimensionality

reduction methods cannot preserve continuity and local similarity everywhere

on the map. This issue is the underlying motivation of our work. Since our

method relies only on local relationships, our technique is locally smooth,

computationally inexpensive, and highly scalable.

22

2.4 Map Generation

We provide the user with a dynamic grid-like map which is instantly and

continuously generated during user interaction. The input to the map generation

process is a precomputed nearest neighbors graph with a similarity score for

each edge. The map can be seeded around a specific image or constrained by

any number of images. As the user is navigating by panning the map, the map

is extended locally to the region of interest, using previously placed images as

constraints. The map is generated by iteratively filling in empty cells in the grid

with the most compatible image for each cell. The compatibility of a image to a

cell in the grid depends on the images that are already assigned to adjacent cells

in the grid; each adjacent image votes for its nearest neighbors as candidates,

and the scores of all candidates are accumulated to produce a majority vote.

Every image I in the dataset is associated with a list of nearest neighbors

I ′ ∈ Near(I), and their respective similarity scores S(I, I ′). Each cell c in the

grid is connected to a weighted list of adjacent cells ci with respective weights

wi. For example, in our implementation each cell is connected to neighbors

on the five by five grid centered at the cell in question, with weights that are

inversely correlated with the Euclidean distance between the cells. We refer to

existing images that occupy the adjacent cells of cell c as reference images or R(c)

where each filled cell ci is associated with an image Ii. The compatibility score

for placing an image I in cell c is defined as the weighted sum of similarity scores

for each neighbor that appears in the list of reference images:

C(I, c) =
∑

Ii∈R(c)

wi · S(I, Ii)

where S(I, Ii) = 0 when image Ii is not a nearest neighbor of image I. At each

iteration, we choose a vacant cell c in the grid, and search for the image that

maximizes the compatibility score,

Ic = argmax
I

C(I, c).

To reduce the search space, we only consider images which are nearest neighbors

of the reference images. We exclude images that are already present on the map

from the candidates list, to avoid repetitions. Since the number of adjacent cells

is bound (depending on the grid size that is chosen), the computational cost of

23

Figure 2.3: The map is filled in an order relative to the direction of browsing.
In this example, the user dragged the map two images up and one image to
the right. The gray dot and red dot, respectively, mark the previous and new
center of the viewport. The numbers state the order in which the first six cells
on the map are filled.

creating the map amounts to a small constant, independent of the dataset size.

This allows creating the map on-the-fly, during user interaction.

The voting process gives precedence to cells that are filled early in the map

generation process. We use this to further enhance the user experience, by

selecting the vacant cells in accordance with the user actions. In general, we

give precedence to cells that have the most filled cells which are direct neighbors

in the 8-connected grid. However, since the map is a regular grid, often there

will be ties and many cells will have the same number of reference images, for

example along the edge of the previous region of interest. We break ties using the

following process. We compute vectors from the previous center of the map to

each cell, and to the new center of the map. We then select the cell with smallest

angle between the map’s center vector and the cell vector. This causes the grid to

start growing from the user’s focus area on and outwards into the rest of the map.

Figure 2.3 illustrates the order in which empty cells in the grid are filled. The

user drags the map two cells up and one cell to the right. The center of the user’s

viewport thus moves on the map in the opposite direction; two cells down and

one cell to the left. The cells marked with numbers will be filled first in their

24

Figure 2.4: Zooming out. The user hovers over an image and uses the mouse
scroll to zoom out. The image stays as a reference point and the images
around it are retrieved from a higher zoom level (the red box is only for
illustration and is not part of the interface).

respective order, followed by the rest of the cells on the grid. Existing images

which are closer to the panning direction effectively have more weight in the

map generation, since their neighbors are selected first.

The map-filling algorithm is simple and easy to adjust to custom graphs. It

can be applied to graphs of any shape, and does not require regularity or planarity.

Supporting weighted graphs requires a minute change in the compatibility score.

2.5 Interface Enhancements

2.5.1 Zoom levels

Our dynamic maps support zooming out to see a larger variety of images, and

zooming in on a region to see more similar images. We support zooming

operations by selecting a hierarchy of high-level delegates that represent every

image in the dataset. All images in the dataset are contained in the first zoom

level; every delegate in the second level represents a group of images in the

first level, every delegate in the third level represents a group of delegates in

the second level, and so on. For each zoom level we connect the delegates in a

nearest neighbors graph as described below.

When the user is browsing the map in zoom level l, only images of level

l′ ≥ l are displayed, and the k-NN graph of level l is used. Note that higher level

delegates are not excluded from the map when browsing lower levels, and can

appear among low level images according to the low level k-NN graph. For zoom

in and zoom out operations, we keep the central image as seed image (or the

25

image the user is focused on while performing the operation) and rebuild the

map around that image using only images that belong to the updated zoom level,

as displayed in Figure 2.4.

Delegate selection can be implemented using various algorithms, as long

as every image has at least one delegate in its nearest neighbors list. In our

implementation we use a straightforward algorithm, which can be done once

for the whole dataset or incrementally when new images are added. For each

image in the dataset, we check whether one of its nearest neighbors is already a

high-level delegate. If none of the nearest neighbors of the image is a delegate,

the image itself becomes a delegate for all of its neighbors. The same process can

be done when adding a new image to an existing dataset.

Next, a list of high-level nearest neighbors is created for each high-level

delegate M . A high-level neighbor is a delegate M ′ that has at least one common

nearest neighbor with M . The score of the high-level neighbors is the maximum

accumulated score of the path in the k-NN graph that connects the two delegates:

S(M,M ′) = max
M ′′∈Near(M)∩Near(M ′)

(S(M,M ′′) + Sj(M
′′,M ′)).

If a delegate has more than k high-level neighbors, only the k neighbors with

the smallest scores are kept. This process is repeated recursively on the high-

level k-NN graph to create multiple zoom levels. The list of high-level delegates

and their k-NN graph is computed as part of the pre-processing, so there is no

additional computational cost for browsing when there are multiple zoom levels.

2.5.2 Focusing on an image

We provide the user with the option to focus on a single image by double clicking

on it. This regenerates the map around the clicked image in the lowest zoom

level (maximum similarity). The images in the rebuilt map are then more likely

to be similar to the specific image in focus rather than to the neighborhood of

images around it. This option also provides the user with another way to quickly

zoom in from higher levels.

26

2.6 Datasets and Implementation

We implemented dynamic maps for two large-scale datasets: one that contains

4,573 shapes, and another with one million images. The implementation details

of the each of these systems are described below. We conducted separate user

studies to evaluate these two systems. The results of these evaluations are in

Section 2.7.

In both implementations, the user interface displays a grid of shapes, pre-

rendered to image files, and enables the user to navigate in the shape space

by dragging the mouse cursor over the shapes. The grid pans according to the

drag command similar to the way it is done in online maps. As soon as the user

releases the mouse button when dragging, the map is populated with new shapes.

For zooming, we provide an interface similar to online mapping services, e.g.

Google Maps, in which the user sees the current zoom level and can click to

zoom-in or zoom-out of the current map. The map can be initialized from a

random location or from a manually set location, at the user’s discretion. In

addition, we provide a double-click feature which allows the user to quickly focus

on a single shape.

The implementation is divided into two separate systems. The user interface

and map generation algorithm were implemented as a single system using C#,

which can be linked with different types of datasets. The input of this system

are the thumbnails that represent the shapes or images, and a list of k nearest

neighbors for each element. Computing the shape and image descriptors and

finding the k nearest neighbors of each element was done as a pre-process in

Matlab. After the computation of the nearest neighbors, there is no difference

between shapes and images which are both represented by a thumbnail in the

interface system. Thus, in the following paragraph we refer only to images even

though it applies to shapes as well.

During navigation, new images are loaded almost instantly after every

navigation action. Internal profiling of the system shows that the map generation

algorithm takes between 0.001 and 0.02 seconds for each page, depending on

the number of new images that are fetched. The bottleneck of our system is

loading the representative image files from disk which takes a portion of a second.

This proves that the algorithm is suitable for handling large datasets with ease.

Since the number of candidate images for each cell in the grid is bounded by a

constant, regardless of the number of images in the dataset, the time complexity

27

Figure 2.5: Nearest neighbors of two shapes. (A) A case where LFD works
well. (B) Using LFD yields one relevant model out of the first eight. (C) Using
a combination of all descriptors yields four relevant models out of the first
eight.

of displaying the map should be the same for very large datasets that contains

millions of images. The space complexity is linear since only k nearest neighbors

are kept for each shape, so running the system with a very large dataset does not

require extraordinary computational resources.

2.6.1 Shapes

Our shapes dataset consists of 4, 573 shapes, collected from two SHREC datasets
[Vanamali et al., 2010; Li et al., 2012b] and the Shape COSEG Dataset [Wang et

al., 2012; Sidi et al., 2011]. To define the nearest neighbors of each shape, it is

necessary to effectively measure similarity between shapes. This is a fundamental

quesion in shape analysis that is one of the focuses of this dissertation. In this

project, we used existing state-of-the-art methods to compute shape similarity,

as described below.

28

Many shape descriptors have been suggested for the task of shape retrieval.

A very popular one is the lightfield descriptor (LFD) introduced by [Chen et

al., 2003]. LFD consists of rendering orthographic silhouettes of the model

from ten different angles on a dodecahedron. To compare two models, the

rendered silhouettes of the models are compared. All possible rotations of the

dodecahedron (60 in total) are considered to compensate rigid rotations of the

compared models. LFD is one of the most effective descriptors to discriminate

between different shape classes [Tangelder and Veltkamp, 2004; Shilane et al.,

2004]. Yet, a nearest neighbors query using LFD may still contain irrelevant

shapes. An example is shown in Figure 2.5.

To identify similar objects where LFD fails to do so, we consider two more

shape descriptors. D2 descriptor [Osada et al., 2002] is a histogram of Euclidean

distance between pairs of points on the shape. The pairs are sampled in a way that

ensures invariance to triangulation. Last, we compute a histogram of the discrete

Gaussian curvature [Meyer et al., 2002; Atmosukarto et al., 2005], sampled over

each vertex in the shape. Each of the descriptors has different strengths and

weaknesses, and we aim at combining the results from all descriptors to identify

different aspects of similarity between objects.

The list of nearest neighbors for each descriptor is kept separately along with

the distance or score of the nearest neighbor. The lists are then merged to a single

list of k nearest neighbors by computing a normalized score for each candidate

that appears in one or more lists. The normalized score is based on the relative

distance between the neighbors compared to all other shapes in the dataset. This

way the descriptors which are more meaningful have a higher weight. Figure 2.5

shows an example of nearest neighbors search for two models. For each model

on the left, the nearest neighbors are displayed on the right, ordered in two rows

from left to right by their relevance score. For the bike model, LFD descriptor

works well, and indeed, our feature selection method retrieves the same models

as LFD alone. For the bird model, only the first model retrieved by LFD is relevant.

Note that there are several other bird models in the dataset which are a better

match for the query object, as can be seen in Figure 2.5c. Using our feature

selection mechanism, we retrieve four relevant models out of the first eight,

where the first nearest neighbor is retrieved using LFD and the rest are retrieved

using D2 descriptor.

29

2.6.2 Images

For this dataset, we downloaded one million images in the public domain

(creative commons) from Flickr image hosting service. The image collection

spans photos with an upload date within a range of 400 days, where for each

day in the range a few thousands of random images were selected. This has

resulted in a diverse dataset which contains images of many different types, such

as landscapes, urban areas, people, wildlife, birds, vehicles and more. Computing

the k nearest neighbors for each image was done as a pre-process using Matlab

with k=20 and took a few hours for the entire dataset.

We find the k nearest neighbors of every image using three image metrics, or

image descriptors. The distance between two images in each descriptor space

is the Euclidean distance between the image descriptors. Average color and

color histogram are popular descriptors used in image retrieval [Deselaers et

al., 2008]. We used them as described below combined with the spatial envelop

descriptor [Oliva and Torralba, 2001].

Average Color. The image is divided into 16 segments, a four by four grid,

and the average color in each segment is computed. Similar images in this

metric tend to have a similar composition. Of course, the image partitioning

does not necessarily need to be four by four, but we find this partitioning

appealing in the sense that it seems fine enough to distinguish between images

with significantly different compositions, yet sufficiently coarse to ignore small

changes in composition of similar images.

Color Histogram. A joint color histogram for RGB values is computed. Each

color channel is divided into four bins, to create a total of 64 bins for every color

combination. The number of pixels that fall in each bin is counted and divided

by the total number of pixels in the image. Similar images in this metric have

similar color distributions, which suggest similar atmosphere or surrounding.

This descriptor is less sensitive to translation, rotation or reflection of the images

compared with the average color descriptor.

Spatial Envelope. The spatial envelope was described in [Oliva and Torralba,

2001] and named gist descriptor since it captures the gist or context of a scene.

The gist descriptor describes the spatial structure of a scene using a set of spectral

signatures which are specifically tailored for the task of scene recognition. It was

shown that in the gist descriptor space, scenes that belong to the same context

30

Figure 2.6: Nine nearest neighbors are displayed for a few source images
marked with a red frame.

are projected close to each other. We use the code provided by the authors to

compute the gist descriptor of every image in the dataset.

The three descriptors are calculated for each image, and k nearest neighbors

are found for each descriptor space separately. The distance from the image to

each nearest neighbor in each descriptor space is kept as well. The three lists are

then merged to a single list of k nearest neighbors by computing a normalized

score for each candidate that appears in one or more lists. Figure 2.6 shows an

example of nearest neighbors search for a few images in our dataset. For each

image on the left, the nearest neighbors are displayed on the right, ordered in

two rows from left to right by their relevance score.

2.7 Evaluation

In order to evaluate DynamicMaps, we compared it to a relevance feedback

method. Relevance feedback (RF) was chosen as the most prominent method for

similarity-based browsing, and the only one we are aware of, that can support

a corpus of millions of images. For simplicity, we implemented a standard

RF method rather than a more complex one (i.e., that might include negative

feedback). We employed a within-subject design to compare performance

and attitudes of participants. The main variable interface describes the search

interface used: DynamicMaps (DM), or relevance feedback (RF).

Interfaces. Both DM and RF interfaces show a grid of 6x5 images at any given

time 1. For the DM interface, we used the system as described above, initialized

with the starting image at the center, around which the algorithm builds the initial

1 When evaluating shapes, 20 thumbnails were displayed on a grid of 5x4.

31

screen grid of 30 images. For the RF interface, the system initializes showing

the starting image on the upper left corner followed by the 29 closest neighbors

on a grid. The user can then select up to 3 images and click a button (labeled

“more images”) to fetch the next set of images closest in similarity to the selected

images (ordered by similarity). At any time, the user can press the back button

and return to the previous screen. Both interfaces included a “restart” button

that returned the view to the initial screen formed by the starting image. As a

starting point, users could enter an image number in a provided textbox around

which the system initializes as mentioned above.

The evaluations presented here for shapes and images are somewhat different

for several reasons. First, this project was first developed and evaluated using

the shapes dataset. The evaluation of the images dataset occured several months

later, after developing the necessary adjustments to support a massive image

collection (mostly in the back-end of computing nearest neighbors for the

collection). Second, the experience of browsing a collection of a few thousand

shapes differs substantially from that of browsing a collection of one million

images. Finally, the massive collection of images allows more elaborate tests as

can be seen below.

2.7.1 Shapes

We employed a 2(method) x 3(task) within-subject design to compare perfor-

mance and subjective opinions of participants. The main variable, method,

describes the search system used and included either the Dynamic Map method

(DM) or the Relevance Feedback method (RF).

The second variable, task, describes the tasks that participants were asked to

perform. Three different task types were given:

1. Choose a model out of the collection according to subjective preferences

(e.g., “find a dining room chair that you would like to have in your home”)

2. Find multiple models in a category (e.g., find ten different types of four

legged animals such as horse, cow, dog, etc).

3. Given a specific reference image of a model, find that specific model in the

collection (e.g., a model of an electric guitar with very distinct body shape

was provided. The starting point was a collection of guitars).

32

For each task type, we devised two similar tasks to be performed. For example,

for the third task, either an image of a guitar or an image of a person was given.

In addition, for each task, a starting shape was determined. The starting shape

was located in the vicinity of the target/s (e.g., for finding a dining room chair,

the starting point was a swiveling office chair). For the DM method, the starting

shape was used as a basis to create the initial grid. For the RF method, the nearest

neighbors of the starting shape were presented as the initial grid.

Sixteen (16) participants took part in the experiment. Participants were mainly

students from a local university. Eleven participants were male and five were

female with an average age of 29.5 (SD = 5.2). All participants had previous

experience with searching images on the Web, and no participants had previous

experience with searching 3D models.

Participants were seated in front of a 22" screen with 1600x900 pixel resolution.

This allowed for a grid of 5x4 models to be displayed. Participants were then

presented with one of the two methods. The user interface features were first

explained to the participants, who were then allowed to freely browse around the

model space using the interface until they felt comfortable using it. Participants

were then given the three tasks one after another and were asked to perform

each task as best as possible. When they completed all three tasks, participants

were asked to fill in a questionnaire on their subjective opinion of the interface.

Participants were then presented with the second interface on which they

completed the same procedure (using three different tasks of the same task

type). At the end of the experiment, a comparative questionnaire was given. The

order of interfaces (which interface was first used) as well as which set of tasks to

perform on which interface was counterbalanced.

Results. Figure 2.7 presents the average amount of search time per task for

both methods. A two-way ANOVA was conducted to assess the time differences

between the two methods. Results indicate that it took participants significantly

less time to search with the DM method than with the RF method, F(1,15) =

44.1, p<0.001. A post-hoc analysis using the bonferroni adjustment, examining

each task separately, showed that there were also significant differences between

the two methods in tasks 1 and 3 with task 2 being very close to significance

(p=0.052). It should be noted that seven participants in the RF condition were

unable to complete task 3 compared to only one participant who was unable to

complete the task in the DM condition.

33

Figure 2.7: Average search time for the three tasks in both the DM and the RF
methods (N=16). Error bars display 95% confidence interval.

Statement DM RF p-value
The search was enjoyable 5.43(1.26) 3.65(1.5) 0.003
The system was effective for the search purposes 4.56(1.67) 3.50(1.71) 0.065
The system limited my possibilities 4.31(1.4) 5.25(1.52) 0.095
During the search, I stumbled across items I didn’t think about 5.25(1.52) 5.06(1.94) 0.687
I easily understood how to use the interface 5.56(1.71) 6.12(1.58) 0.331
I easily understood the efficient way to conduct the search 5.12(1.45) 3.68(1.30) 0.005
It was easy to conduct the searches 5.12(1.31) 3.37(1.58) 0.007
During the search I felt frustrated 3.37(1.66) 4.93(1.73) 0.021

Table 2.1: Average ratings and standard deviation of the two interfaces.
Ratings are given on a 7-point Likert scale ranging from strongly disagree (1)
to strongly agree (7). P-values of the Wilcoxon signed test, comparing the two
provided interfaces.

Next, we analyzed participants’ opinion of the interfaces. Table 2.1 presents

the set of statements presented to participants after interacting with each method

(DM and RF) as well as their average responses. Ratings were given on a 7-point

Likert scale to indicate how much participants agreed with each statement,

ranging from strongly disagree (1) to strongly agree (7). With ranked ordinal data

and a relatively small sample size, it is recommended to use a nonparametric

statistical test [Huck et al., 1974]. We therefore used the Wilcoxon signed

nonparametric test to examine differences in ranking between the groups. As can

be seen in Table 2.1, results indicate a preference to the DM method on almost

all questions.

34

Statement DM RF No opinion
Which system was more effective for task 1? 11 3 2
Which system was more effective for task 2? 11 5 0
Which system was more effective for task 3? 9 4 3
Which system was more effective overall? 11 3 2
When you have a vague idea of the search, which system is better? 12 4 0
When the target of the search is clear which system is better? 8 7 1
Overall, which system do you prefer? 12 2 2

Table 2.2: Direct preferences between the two interfaces (N=16).

Finally, we analyzed the direct comparison questions given at the end of the

experimental session. These results are presented in Table 2.2.

Evaluation Summary. Overall, participants clearly preferred the DM

method over the RF one. This is demonstrated both in the direct comparison

results (Table 2.2) and in the independent ratings of each interface (Table 2.1).

Participants felt that the DM interface was more enjoyable, effective, efficient

and easy to use. Together, these measures are used as an indicator of a system’s

usability [Brooke, 1996], thus our results suggest that the DM method is more

usable than the RF method for the given search tasks. Better efficiency is also

indicated by the fact that participants completed their tasks faster using the DM

method.

2.7.2 Images

Tasks. Tasks were designed to be open-ended and reflect real-world search

needs (similar to [Rodden et al., 2001; Yee et al., 2003]). Two general tasks were

defined for the within-subject design. In each task participants were asked to

find images that would best fit text slides of a given presentation. For example,

the first presentation was on a non-profit organization titled “the society of

preservation of nature”. The initial slide was a title slide, the second slide talked

about the organization’s mission, the third slide talked about the history of

the organization and the final slide talked about the major active projects the

organization employs today. All slides included only text with no color or graphic

design. Participants were asked to find up to three images that would best fit

each slide. The second presentation was similar in nature and had to do with

architecture. For each task, participants were given four starting points in the

interface. This emulated four possible keyword search queries. The starting

35

points were chosen as single images relevant to the task (for example, images of

animals or nature for the previously mentioned task).

Participants. A total of 24 participants took part in the study, 11 were male and

13 were female with an average age of 27.1 (SD = 5.1). Participants were mostly

students of a large university from a wide range of departments and faculties. All

had normal or corrected-to-normal eye vision. 15 participants reported searching

on the Web for images every week, while 5 participants reported searching every

two weeks or so and 4 reported a lower rate. Image search task reported including

finding images for presentations, looking for images for study purposes, looking

for products and more. Most participants indicated using Google images as their

main image search tool.

Procedure. Participants were seated in front of a 22” screen with 1440x900

screen resolution. Participants were then presented with one of the two interfaces.

The user interface features were first explained to them, after which participants

performed one practice task on which they were instructed to use the interface

until they felt comfortable with it. Participants were then given one of the two

tasks and were asked to perform the task as best as possible. No time limit was

given for the task. After they completed the first task using the first interface

participants were asked to fill in a questionnaire asking their subjective opinion of

the interface they just used. Participants were then given the second interface on

which they completed the same procedure using the second task. All interactions

with the interfaces were logged and later analyzed. At the end of the experiment

a comparative questionnaire was given and participants were asked to comment

on each interface. The order of interfaces (which interface was first used), as

well as which task set was used with which interface was fully counterbalanced,

creating four different configurations (six participants in each configuration).

2.7.2.1 Results

Order effects. To rule out order effect (whether participants started with the

DM or the RF interface), we performed a between-subject ANOVA with interface

order as the independent variable on both task completion time and on number

of unique images seen. No effect was found for both variables. Next, to ensure

there were no differences between tasks we performed a within-subject ANOVA

with task as an independent variable. Again, no effect was found for both task

completion time and number of images seen.

36

DM RF F p-value
Images seen per minute 230.0 (51.9) 104.5 (51.0) 98.2 <0.001
Unique images seen per minute 98.4 (21.1) 49.3 (18.6) 107.6 <0.001
Task completion time in seconds 805.8 (334.4) 761.5 (348.9) 0.55 0.47

Table 2.3: Average (and standard deviation) number of unique and non-
unique images seen per-minute, and task completion time.

Completion time. On average, it took participants 805.8 seconds (13.5

minutes) to complete the task in the DM interface (SD = 334) and 761.5 seconds

(12.7 minutes) in the RF interface (SD = 348). A one-way repeated-measures

ANOVA on task completion time did not find these differences to be significant,

F(1,23) = .55, p = .47.

Amount of Interaction. We compared the amount of user interaction with

each of the interfaces. In the DM interface, an interaction is performed either by

dragging the mouse to pan the view in order to bring up more images (number

of pans), by zooming in or out (number of zooms), or by doubleclicking on a

single image to bring it to the center. In the RF interface, an interaction translates

into a “more images” or “back” press which brings up the next or previous set of

images (number of presses). Thus, we compared the number of pans + zooms

+ double clicks in the DM interface with the number of combined “more” and

“back” presses in the RF interface. Results indicate that there were many more

interactions per task in the DM interface (M = 158.4, SD = 93.3) than in the RF

interface (M = 35.9, SD = 31.4). A one-way within subject ANOVA on number of

interactions showed these differences were significant, F(1,23) = 90.9, p < 0.001.

Amount of images seen. Analyzing the log files, we summed up the amount

of images seen in each interface. We examined both the total amount of images

seen in a specific task, and the total amount of unique images seen, since some

images may appear several times during the same task. With the RF interface,

the total amount of images seen is equal to the number of interactions (as listed

above) plus 1 (for the initial screen) times 30 (each screen showed a grid of 6x5

images). In the DM interface, each pan adds a different amount of images to the

screen depending on the pan position. We counted the 30 initial images, and

then added the newly filled images in each pan. A zoom, restart, or doubleClick

event brought 30 more images. For the unique images seen, in both interfaces,

we counted the unique images presented from the beginning till the end of the

task. Because there were large individual differences in task completion time, we

37

Figure 2.8: Average number of pans made and number of images seen in
each of the five zoom levels (level 1 being images that are most similar to each
other).

normalized these results over time and measured the total number of unique and

non-unique images seen per minute. Results, presented in Table 2.3, indicate a

large, significant difference in both total and unique number of images seen per

minute. Users using the DM interface have seen significantly more total images

per minute than when using the RF interface, F(1,31) = 98.2, p<0.001. Users using

the DM interface have also seen more unique images per minute than users

using the RF interface, F(1, 23) = 107.6, p < 0.001.

Zooming. All participants used the zooming feature often, with an average of

39.6 times per session (or 2.94 zoom events per minute). To better understand

the usage of Dynamic Maps, we analyzed the use of the zooming levels. Figure 2.8

shows the number of pans made and number of (non-unique) images seen in

each zoom level. As can be expected, most interaction was done in the first zoom

level, with interaction dropping heavily after the first level.

Subjective opinions. After using each interface, participants were presented

with a set of statements and were asked how much they agreed with each one

on a 7-point Likert scale ranging from strongly disagree (1) to strongly agree

(7). Table 2.4 presents these statements and the visitors’ responses with both

interfaces. A Wilcoxon Signed Ranked non-parametric test did not find significant

differences in ranking of any of the statements between the two interfaces.

At the end of the experiment, we presented participants with a final ques-

38

Statement DM RF
The system was efficient for the search tasks 4.20 (1.14) 4.15 (1.22)
The system limited my options 4.75 (1.69) 4.91 (1.28)
The search was fun 4.63 (1.24) 4.33 (1.16)
I quickly understood how to use the interface 5.87 (1.19) 5.87 (1.11)
During the search I felt frustrated 3.25 (1.64) 3.54 (1.84)
I am satisfied with the images I picked for the presentation 5.10 (1.25) 4.83 (1.00)

Table 2.4: Participants average ratings (and standard deviation) per interface
on a 7-point Likert scale (N = 24).

Statement DM RF No pref.
Which system was more efficient? 12 8 4
When you have a vague idea of the search target, which system is better? 15 7 2
When the search target is clear, which system is better? 7 15 2
Which system is best to see a wide variety of images? 16 5 3
Which system is easier to learn? 6 7 11
Which system do you prefer overall? 15 8 1

Table 2.5: Number of participants preferring each interface on a list of criteria
(N = 24).

tionnaire asking them for their preference of interface on a list of criteria

(Table 2.5). Results indicate a general preference toward the DM interface,

although preference was not absolute. Most participants thought the DM

interface was more efficient and preferred it overall. It is interesting to note

that most participants thought the DM interface is better when there is a vague

idea of the search target and for seeing a wide variety of images, while there was

a general preference for RF when the target is clear.

2.7.2.2 Discussion

Our results indicate that Dynamic Maps provide a more interactive experience

for the users and allows them to view a wider variety of images than previous

methods. Participants viewed many more images (both unique and non-unique)

per time with the DM interface compared to the RF interface. While the way of

interacting in the two conditions is quite different, still, many more interaction

events were measured in the DM compared to the RF interface. Thus, it seems

that participants viewed more images by actively interacting more with the

interface. It should be noted that we cannot be sure that participants actually

saw all the images that were displayed on screen. RF actually forces the user to

more closely examine each image, while DM better supports scanning through

39

images. This may help to explain the large difference in the amount of presented

images.

Dynamic Maps provides immediate and continuous interactive feedback

that does not require the user to make conscientious sequential selections, but

rather asks the user to visually choose a direction to follow based on general

perceptive cues. Thus, it affords easier and faster movement in the image space,

with less sense of commitment, enabling the user to see a wider variety of images

(a fact also realized by participants in the subjective preference questionnaires).

This can also be look at from a cognitive load perspective. Cognitive load in the

information retrieval context can be seen as a measure of information processing

effort a user expends to comprehend the visual stimuli and interact with the

system [Hu et al., 1999]. Using the RF interface, the user needs to go over every

image and explicitly provide a relevance judgment on the image, a process that

requires a high state of cognitive load [Back and Oppenheim, 2001]. Dynamic

Maps are less cognitively demanding since the user does not need to make a

decision regarding each and every image, but can rather follow general visual

cues. As one participant wrote, “I prefer DM. Less mouse clicking. Dragging is

easier then thinking of which images will bring me closer. In DM you can see a

larger range of images at once without the need to choose and click over and over”.

Having easier interaction capabilities and viewing more images per time unit

is more useful when the search is vague and it might be difficult to select specific

images that lead directly to the target. It is then easier to experiment, and follow

one or more visual search directions than to select specific images. Another

advantage of faster and more interactive browsing is that it can better support

serendipity in the search process, since users interact more and may stumble

upon different areas. It is easy for users to explore regions they may not have

envisioned. This was reflected in a statement of a participant: “It is possible to

reach different directions, thoughts and ideas that I have initially not thought

about”.

Zooming was often used and was referred to by participants as being very

useful. The Zooming option enabled the users to step back and get a wider view

of the current corpus. It also supports getting a more diverse view, with the

diversity level controlled by the user. Furthermore, using zoom out and pan, the

user can view the different topics and content available in the current corpus

using simple interactions. This can be useful to get an overview of the image

corpus.

40

No overall significant difference between the interfaces was found for task

completion time. Completion time is often looked at as a measure of efficiency.

However, in the current study, the task was open-ended and participants were

asked to take as much time as needed to find the best possible images. Thus,

we do not think that in this case completion time is an indicator of efficiency or

quality. On the contrary, it might be that more time spent on the task indicates

that the interface was more engaging and caused users to search more thoroughly.

Similarly, other studies have found no correlation between task completion time

and quality of results or user satisfaction [Rodden et al., 2001].

Finally, we note that many participants mentioned that Dynamic Maps were

enjoyable and the interaction with it was much more smooth and fun to use than

the RF interface (e.g., “The [DM] system is enjoyable, it is easy to operate and it

naturally flows”). We believe that this will be highlighted even more when using

the system with touchbased interfaces. With its pan-based interaction, Dynamic

Maps should be ideal for searching images on a Tablet computer, for which the

playfulness of Dynamic Maps would be even more prominent.

2.8 Conclusion

We present Dynamic Maps, a technique for browsing a very large set of shapes,

images or any other high-dimensional object which can be represented by a

thumbnail. In our method, objects are laid out on a two-dimensional dynamic

map that is locally updated according to user navigation. Dynamic Maps enable a

smooth, fast and more interactive experience that is best suitable for exploratory

search, when the search target is vague. It is also useful for serendipitous

browsing in exploring regions not envisioned by the user and for getting a wider

view of the corpus. Further work may explore using semantic information in the

similarity measures as well as combine Dynamic Maps with keyword search.

One of the most prominent features of our approach is the locality of the

solution. The local approach enables the construction of an unconstrained, easy

to use and highly scalable system; it can support massive datasets containing

millions of models with ease. It can also easily handle frequent changes in the

dataset. The local nature of the algorithm allows for a seamless addition of shapes

or images, and other on-the-fly changes. This cannot easily be accomplished by

other global feature preserving techniques. At the same time, some limitations

stem from this locality.

41

Since we do not keep models outside the current boundaries of the map,

models may be repeated during a browsing session, appearing at multiple

locations on the map. In practice, it is possible to prevent some repetition of

models by excluding models that were recently seen from the search space and

remembering previously generated patches on the map. However, this requires

a delicate balance, since keeping previously seen regions of the map creates

global constraints that often cannot be fully satisfied. Informal feedback from

participants in our user study suggests that users do not feel the repetition of

models is hindering the user experience, since it is usually easy to avoid by

navigating away from seen models, or using the zoom ability to view a greater

variety.

Another limitation of our system is that it may be difficult to find non-

dominant concepts or particular images. The appearance of a certain image

on the map does not guarantee the appearance of all similar images. Rather,

only similar images which match the current browsing direction are displayed.

Thus, a specific image may be hard to locate. If a concept rarely appears, the

user will be unlikely to find it as it will be hidden within another area. This is

due to the voting mechanism which ensures only shapes that are relevant to the

surrounding appear on the map, thus pruning outliers.

The presented method is most suitable for free-form search, where the user

does not have a specific target in mind, and the goal is to browse a variety of

shapes rather than retrieving the single most relevant shape. A primary goal

of the dynamic map is to aid the refinement of 3D object search. As such, it is

our vision that the technique is used in tandem with keyword shape search. In

such a setup, the dynamic map can be seeded around an shape which is the

best match for the textual keyword search, to provide the user with a variety of

objects that resemble the best match. The map generation method is decoupled

from the construction of the k-NN graph, which makes the method applicable

for other domains as well, such as searching text documents or any kind of high

dimensional data.

42

3 Semantic Similarity from Crowd-
sourced Clustering

Figure 3.1: Nearest neighbors of the center image in a collection of movie
posters, computed using image descriptors (left), and crowdsourced queries
(right). Smaller images mark farther neighbors.

It is extremely hard to define a distance metric that would capture well the

intuitive or semantic similarity between images (see Section 1.1). State-of-the-art

analytical methods for computing such a metric fall short when similarities are

derived from a broad semantic context. Consider, for instance, the similarity

between the movie posters in Figure 3.1. Identifying such similarities is usually

easily done by a human observer, but pose a hard computational problem

nonetheless.

The natural solution is thus gathering information about semantic similarities

between images from people, for example using a crowdsourcing technique.1

This approach was taken in recent work to collect style similarity measures [Lun et

al., 2015; Saleh et al., 2015]. The typical comparison task that the crowd performs

1 Crowdsourcing is a general name for processes that involve posing many small-scale tasks to
the crowd of web users, and piecing together the crowd’s answers to achieve a larger-scale goal,
such as constructing a large knowledge base.

43

is of the following form: given three images A, B, and C, choose whether A is

more similar to B or to C (a triplet query). Assuming consistent query responses,

querying every image triplet yields the full relative similarity metric over the set

of images. However, the number of triplets is prohibitively large. Thus, typically

only a sample of the triplets are queried and the rest are estimated based on

extracted image features [Lun et al., 2015; Saleh et al., 2015]. In addition, such

queries lack context which is often necessary in order to perform comparison

tasks (see Figures 1.3 and 1.4).

In this work, we propose an alternative approach for learning image simi-

larities based on clustering queries posed to the crowd. Instead of queries of

three images, crowd members are given a small set of images and are asked to

cluster them into bins of similar images using a drag-and-drop graphical UI (see

Figure 3.2). While a single clustering task requires more effort than comparing

three images, our approach has two important advantages. First, the results of

a single clustering task provide a great deal of information that is equivalent to

many triplet comparison tasks. Images placed in the same bin are considered

closer to one another than to images in other bins, so triplets can be formed from

each pair of images in the same bin along with any third image from another bin.

Second, each query provides crowd members with additional context that assists

them in performing a more faithful and meaningful comparison.

A key observation of this work is that a similarity metric can be constructed

more efficiently by performing comparisons on similar images rather than non-

similar ones. This is true in particular in the context of semantic similarities,

where local similarities are often more meaningful. Following this observation,

(a) (b)

Figure 3.2: An example of the clustering interface. (a) The user is presented
with 20 images to cluster into the four bins on the right. (b) The bins may
contain as many images as necessary. When all images are clustered, the user
can submit the query and receive another one.

44

we develop a novel, adaptive algorithm that aims to generate queries that are as

local as possible. The challenge here is that similarities are unknown in advance.

Thus, our algorithm works iteratively. At each phase we generate and pose

clustering queries to the crowd. As information is collected, we progressively

refine the queries to focus on similar images in a narrower local neighborhood.

Local similarity comparisons are embedded in Euclidian space to obtain a refined

estimation for the global similarity metric. This refined metric is then leveraged

for computing more locally-focused queries in the next phase. This progressive

method efficiently converges to a meaningful similarity estimate.

Evaluation and experimental study. To test the efficiency of our approach,

we implement our technique in a prototype system, and use it to conduct a

thorough experimental study, with both synthetic and real crowd data. First, we

test our technique over two image datasets where the ground truth is known,

examine the results and compare them to a baseline approach that uses the

same number of queries but chooses them randomly. Second, we compute the

k-NN images for real-world image datasets, where the ground truth is unknown,

and evaluate the results manually. Last, we study the effect of parameters such

as the number of phases and queries in a series of synthetic experiments. Our

experimental results prove the efficiency of our approach for computing semantic

image similarity based solely on the answers of the crowd, while using a relatively

small number of clustering queries.

Throughout this chapter we again focus on similarity between images.

However, since we rely solely on crowd queries, our method is suitable for any

objects that can be represented by images or thumbnails. In our experiments,

we estimate similarities between 3D shapes (represented by a single rendered

image) and fonts. Other possibilities include words, videos (represented by a few

significant frames), celebrities, and more. Crowd members can also be instructed

to relate to specific properties of the presented object. For example, they can be

instructed to cluster the faces of politicians according to their views, rather than

according to their physical similarity.

3.1 Related Work

The classification of images is a well-studied problem. A common paradigm is

based on image descriptors, such as the color histogram of images, SIFT based

descriptors [Lowe, 1999], or GIST descriptors [Oliva and Torralba, 2001]. The

45

distance between two images is defined as the Euclidean distance between

the image descriptors, on top of which machine learning techniques can be

employed to find similarities or clusters of the images (e.g., [Wang et al., 2009;

Zha et al., 2008]). Other methods employ a bag of features (BoF) approach,

using visual segments [Sivic and Zisserman, 2003] and/or textual annotations,

either attached to the images manually or from the textual context of a web page

(e.g., [Wang et al., 2009; Zha et al., 2008]). However, such methods fall short when

classification relies on semantically-rich features, which may be hard to learn

from the images, and may only be partially reflected in the labels.

Semi-supervised learning methods can alleviate the problem of lacking

semantic features. These methods rely on manual labeling of a small set of

image pairs or triplets, rather than per-image labels for the entire set. A large

body of work has attempted to classify images by using pair-wise labeling

consisting of equivalence (or inequivalence) constraints, i.e., whether or not

the pair belongs to the same class [Bar-Hillel et al., 2005; Biswas and Jacobs, 2014;

Weinberger et al., 2005; Xing et al., 2003]. Triple-wise constraints are more

relevant to relative comparisons of images, as they compare the distances of

two image pairs [Frome et al., 2007; Lun et al., 2015; O’Donovan et al., 2014;

Saleh et al., 2015; Tamuz et al., 2011]. The constraints can then be used to

learn a distance metric between images. In particular, the work of [Tamuz

et al., 2011] focuses on adaptively selecting optimal triplets based on crowd

input. In the recent work of [Lun et al., 2015; O’Donovan et al., 2014; Saleh et

al., 2015], triple-wise comparisons have been collected from crowd members in

order to learn about style similarities. While these studies highlight the need in

collecting similarity comparisons from the crowd, the use of triplet comparisons

has shortcomings that our work addresses: this approach requires many crowd

tasks, and users are not given context for comparison. These shortcomings were

also noted by [Wilber et al., 2014], a study that focuses on redesigning the user

interface to derive more image comparisons from each crowd task. This is done

by asking users to select the X most similar images to a given image, out of a

set of Y images. The new interfaces of [Wilber et al., 2014] is a step forward

from triplets, but in contrast with our work, their study does not consider how to

effectively choose images to compare.

Another work highly related to ours is Crowdclustering [Gomes et al., 2011],

which considers clustering images with the crowd. Each crowd member obtains

a sample of a few images (a query) and classifies them into groups. This input

46

is used to train a Bayesian model which estimates the ways different crowd

members may classify each image. This work resembles ours in letting the user

cluster a small set of images, and also in the idea of refining the clustering results

by re-applying the technique on the obtained clusters. However, their technique

is not designed to compute image similarities. In contrast, we employ the

progressive refinement to determine image similarities with faster convergence.

We compare the performance of our techniques with [Gomes et al., 2011] in

Section 3.3.

The work of [Yi et al., 2012] suggests to only obtain query answers for a small

fraction of the data, and use dedicated matrix completion techniques to complete

the missing classifications, rather than requiring that every image appears in at

least one query as in [Gomes et al., 2011]. This work is orthogonal to ours, and

can be employed in our case if the number of queries that can be asked is small

relative to the number of images.

Crowdsourcing has been employed for tasks related to ours such as record

matching based on images [Marcus et al., 2011], grouping and top-k [Davidson et

al., 2013], and entity matching [Wang et al., 2012]. However, no previous work has

considered the problem of learning an image similarity metric, nor can be applied

in a straightforward manner for this task. For example, k-NN may be viewed

as finding the top-k most similar images for each image; however, applying the

method of [Davidson et al., 2013] for each image separately is inefficient.

3.2 Algorithm

We next describe our method of generating queries to the crowd based on

an estimated similarity metric, and of refining the similarity metric based on

answers from the crowd. We aim to use queries that involve images from the

same local neighborhood, which are more effective for determining the global

similarity metric.

Our algorithm generates clustering queries by selecting sets of nq images.

The answer obtained from crowd members is a division of this image set into nc
clusters. The crowd is a relatively expensive resource in terms of latency, human

effort, and often monetary cost as well. Therefore, in many practical cases, the

total number of queries that can be asked is restricted by a predefined budget.

Given such a budget, the goal of the algorithm we develop is to utilize the queries

in the best way possible, by considering only local neighborhoods. This yields

47

an iterative process, where local neighborhoods change according to queries

results.

Our method estimates local distances by maintaining an embedding of

the entire set in Euclidian space, in which the distances are calculated. The

embedding is initialized randomly, and local neighborhoods are progressively

improved. The embedding ensures that even distances that were not queried

are consistent with the partial information derived from queried distances. To

improve the embedding of local neighborhoods, we pose queries to the users

in small batches, and update the embedding after each batch. Interestingly,

querying local neighborhoods of the embedding proved beneficial even in early

stages when the images are not necessarily semantically close, since such queries

provide many constraints on the same neighborhood. In addition, in each

iteration we wish to preserve the close neighbors which are already semantically

similar. Even in a random embedding, local neighborhood based queries help to

detect and preserve cases where some neighbors are also semantically similar.

The main steps of the algorithm are illustrated in Algorithm 1: As input, the

algorithm takes the total number of allowed queries (budget) and the number of

queries to generate at each iteration (batch_size). The results of the queries are

integrated into the embedding (E) and the induced global distance metric (D).

The output of the algorithm is the distance metric computed based on the last,

most refined embedding.

Clustering query. For a set of images I, we define a query Q as a subset of I
containing nq images. The answer to each query is a division of Q into disjoint

clusters C1, . . . , Cnc ⊆ Q. From these answers we extract similarity comparisons:

Algorithm 1: CrowdSter(budget, batch_size)
1: E = EmbedData() // random embedding

2: num_of_queries = 0

3: while num_of_queries < budget do

4: Q = SelectQueries(E, batch_size)

5: R = RunQueries(Q) // using the crowd

6: D = DistanceFromEmbedding(E)

7: D = UpdateDistances(D, R)

8: E = EmbedData(D)

9: num_of_queries += batch_size

10: end while

11: D = DistanceFromEmbedding(E)

12: Output D

48

given two images x, y in cluster Ci, and a third image z in a different cluster

Cj , we infer that ∆(x, y) < ∆(x, z), where ∆ represents the similarity metric.

As nq increases, we obtain more comparisons, but the number of images in a

query should be small enough to allow a crowd member to view them [Marcus

et al., 2011]. In our experiments, we found that nq = 20 is a good balance of

this tradeoff between effectiveness and simplicity. Following this, we found that

setting the number of clusters nc to 4 is optimal, as it balances between inferring

more comparisons (smaller nc values) and quickly pruning less similar images

(larger nc values).

Generating queries. Queries are generated in our algorithm based on the

embedding from previous phases. In each phase, we generate queries that (a) are

local, and (b) cover the set of images as evenly as possible. To do so, we sample

random images uniformly while making sure they are not nearest neighbors of

each other. When no such samples remain we start over. For each sampled image,

we find its k nearest neighbors in the embedding. Then, out of these neighbors

we sample a random subset of size nq and use it as the next query.

Embedding. We maintain an embedding of all images in the dataset in a

d-dimensional space. The embedding infers a consistent distance between every

pair of images, to be used in the next phase, and is gradually improved with each

batch of queries. In our experiments, we used d = 6. We also experimented

with higher values of d, but there was no significant effect on the efficiency

of our method. Before the first queries are sent to the users, the images are

embedded into the Euclidian space using a uniform random distribution. To

gradually improve the embedding, we calculate the distance between each pair

of images in the embedding, update the distances according to the query results,

and embed the images again using the updated distances. This consolidates the

updated distance and resolves any inconsistencies among them. To compute the

embedding we use multidimensional scaling (MDS), whose input is the distance

between each pair of images.

More specifically, we want to find an embedding by taking into account

only distances that we have information of (via query results), ignoring all

other distances. For this we use Sammon Projection [Sammon, 1969], which

is a multidimensional scaling technique that computes an embedding using a

stress function and gradient descent. The weighted stress function can take into

account the relevant distances and ignore other distances by giving them a very

small weight. All weights are initialized to a very small value ε. In each phase, we

49

set the weight for each updated distance to 1. Distances that were updated in

previous phases maintain a weight of value 1, so once a pair of images is queried

its distance is always taken into account when computing the embedding in

subsequent phases.

Updating the distance. To update the distance, all the query results in the

batch are aggregated and analyzed. For each pair of images in each query, we

refer to a query result as positive if the images were assigned to the same cluster,

and negative if the images were assigned to different clusters. The distance

between a pair of images is shortened if the pair has more positive than negative

query results, and made longer if the pair has more negative query results. The

distances between pairs of images for which there was a tie and pairs of images

that did not appear in the same query are not affected.

Distances are shortened by dividing by β and are made longer by multiplying

by β. In our experiments β is set to 4. Note that we do not take into account the

number of times a pair of images appeared in the same batch of queries. For

example, a pair of images that has two out of two positive query results is updated

in the same manner as a pair of images that has three out of four positive query

results. Since the phases tend to be short, the probability that the same pair of

images will appear in many queries is small, and inferring from the exact ratio

between positive and negative results is too sensitive to randomness.

3.3 Experiments

To evaluate the efficiency of our approach, we conduct three sets of experiments,

described below. First, to verify the correctness of our approach, we conduct a

set of small-scale experiments for a data set where the ground truth is known.

This ground truth allows evaluation of the result quality. Second, we test the

practicality of the approach for semantically-rich image similarities, using larger

sets of images, where the ground truth is unknown. Finally, to further investigate

each component of our solution, we conduct synthetic experiments where the

ground truth similarity is known, and crowd answers to queries are simulated

accordingly instead of using real crowd. We vary different parameters of our

system, and observe the effect on the output quality. In all sets of experiments,

we further compare the results we obtained to alternative, baseline algorithms.

50

• Random: Randomly select queries, equivalent to executing our algorithm

in a single phase.

• Crowdcluster: Using the method of [Gomes et al., 2011]. The results of this

method are targeted to identify clusters, but also include a mean spatial

location for every image, which we use as an alternative to our embedding.

• Feature-based: Estimate the similarity of images based on automatically

extracted image features, which serves as a baseline where ground truth is

not available.

Implementation and crowd UI. Our crowdsourcing system includes a dedi-

cated, user-friendly crowd interface. The UI of the system is implemented on

the Google App Engine platform. The back-end analysis of the crowd answers

and the computation of the next queries to be posed to the crowd is performed

in MATLAB R2014b. A screenshot of the UI is shown in Figure 3.2. Initially, we

display 20 images on the left-hand side of the screen (the query), and the crowd

member is asked to drag and drop the images in one of the 4 right-hand side

bins (and also move images between bins). Crowd members can also decide to

leave images outside of any bin if they are unrelated to any of the other images,

indicating that the leftover images are dissimilar to the images within the bins.

This UI was used in the experiments described below.

3.3.1 Crowd Experiments with Ground Truth

As a sanity check, we executed two small scale experiments, with a small crowd

(about 10-15 crowd members) and small sets of images, where the ground truth

is known. We experimented with two different computation tasks: top-k and

clustering. For each task, the crowd members answered queries of both the

baseline algorithm and our algorithm.

Top-k similar colors. The simplest set of images that we have used is a set of 300

solid colors, whose ground truth similarity can be measured, e.g., by embedding

the colors into 3-dimensional space according to their RGB or HSL values (we

have used RGB). The goal was to compute, for each color, the k-NN most similar

colors for varying values of k. We have compared the results of our algorithm to

the results of the baseline random and crowdcluster algorithms, using the same

number of queries overall in the three algorithms.

51

Figure 3.3: A comparison of the accuracy of 10-NN images based on real
crowd input, using our algorithm and two baseline alternatives.

The results indicate that our algorithm identifies a larger percentage of the

nearest neighbors for a larger percent of the images. Figure 3.3 illustrates the

10-NN results for the three algorithms using 235 queries overall. Five phases were

used in our algorithm. For each algorithm, we show a histogram of intersection

between the true 10-NN (according to the ground truth) and the computed

10-NN. Note that crowdcluster slightly outperforms the random baseline, but

our algorithm generally identifies a larger fraction of the true 10-NN images,

“pushing” the histogram rightwards (red bars). Overall, our algorithm identifies

43.4%-50% more of the true nearest neighbors than the baseline alternatives,

which demonstrates the effectiveness of our progressive refinement approach.

Clustering fonts. In this experiment we have tested the ability of our algorithm to

cluster letter images into fonts, where the ground truth is the font to which the

letters belong. We have used 180 letters of 12 different fonts, and asked crowd

members to evaluate the similarity of letters with respect to their appearance.

The results have been used to compute 12 letter clusters, which should ideally

match exactly the 12 original fonts. Our algorithm has used 123 queries in total

over 5 refinement phases. For comparison, we have executed the same task

with 123 random queries.

Figure 3.4 illustrates the experimental results and in particular the progressive

refinement, via heatmaps that represent the cluster quality after each of the 5

phases. The results of the algorithm are almost perfect, with only 1.1% errors

(two letters). In comparison, the random query selection resulted in around

60% errors, and was outperformed by our algorithm already after the second

52

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Heatmaps displaying the accuracy of clustering for the font
dataset. Figures (a)-(e) illustrate the cluster quality after phases 1-5 of our
algorithm, respectively, and 123 queries in total. For comparison, Figure (f)
displays the cluster quality after 123 random queries.

(a) (b)

Figure 3.5: Two examples for clusters produced for the same letter “a” (on the
top left), based on the similarity metric of (a) our algorithm, and (b) random
baseline.

phase. Figure 3.5 displays an example cluster produced by our algorithm, and the

corresponding cluster produced by the random baseline. The latter cluster makes

sense in the broader context of the fonts, since it contains only handwriting fonts;

but the progressive refinement in our method allows distinguishing also between

the different handwriting fonts.

3.3.2 Crowd Experiments with Real-world datasets

Next, we have executed experiments with two real-world datasets where the

image similarity is highly semantic and therefore image features may not be

sufficient for estimating this similarity. The first dataset consists of 910 images of

movie posters downloaded from the movie pages in Wikipedia, where similarity

53

Dataset Number of images Success % ∆

Movie posters 910 87.2% 2.5
Chairs 1024 76.2% 3

Table 3.1: Real-world dataset results

is usually based on genre, style of the poster, characters, and so on. For this set

we have collected 547 query answers from about 60 crowd members.

The second dataset consists of 1024 chairs, of different types and angles from

the ShapeNet dataset [Chang et al., 2015]. Similarity in this dataset is based,

among others, on semantic features such as the usage of the chairs, the material

they are likely to be made of, and their assessed level of comfort. For this set we

have collected 559 query answers from about 60 crowd members.

As in many real-life scenarios, for these sets there is no ground truth or gold-

standard. Hence, we have manually examined the results of our algorithm by

sampling images with with their k-NN images, and comparing these results with

the results obtained by automatic means based on image features. For the movie

dataset, we used a color histogram with 64 bins (four bins for each of the RGB

channels), and an image thumbnail of four by four pixels, or a total of 16 RGB

values. The two descriptors were concatenated and treated as a single vector

for the distance calculation. For the chair dataset we have used features derived

from HoG descriptor [Dalal and Triggs, 2005].

For the manual examination, we used 50 random “seed” images sampled

from each of the datasets. For each seed image, we took its 10 NN images from

the dataset according to both our algorithm and the feature-based baseline. Each

of the images was labeled “very similar”, “similar”, or “unrelated” with respect to

its seed image. We counted the percent of seed images for which our algorithm

finds a greater number of similar images than the baseline, breaking ties by the

number of “very similar” images. The results are displayed in the Success %

column of Table 3.1. To quantify by how much we outperform the baseline, we

also computed the average difference between the number of similar images our

algorithm has discovered and the baseline. This difference is marked by the ∆

column in the table.

We illustrate a specific example of the observed difference in Figure 3.1.

The figure displays the 10-NN images (a) computed by our algorithm based

54

(a) (b)

Figure 3.6: Image retrieval results: nearest neighbors of the center image in a
collection of chairs, computed using (a) HoG descriptor, and (b) crowdsourced
queries. Smaller images mark farther neighbors. Less similar chairs are
highlighted.

on clustering queries and (b) according to color descriptors. The seed image

is displayed in the middle. In this case, the results of our semantic similarity

estimation retrieve movies of the same genre (animated adventure films). Within

that genre, most of the closest neighbors (four out of the top five) have the same

visual appearance (blue background) as the seed image. On the other hand, the

movies retrieved by using image descriptors have a similar visual appearance

in terms of color scheme and mood but are very different semantically. Note

that while we use rather simple image descriptors, even extremely sophisticated

descriptors would fail to associate posters of movies in the genre which has

different visual appearance with the seed image.

Figure 3.6 displays similar results for the chair dataset, but where the baseline

k-NN results (a) are computed according to HoG descriptor. The seed chair is

a school chair with curvy tubes supporting the back. The 10-NN chairs given

by our algorithm are all school chairs and many of them contain similar style

elements such as curvy tubes. In contrast, the chairs computed using the HoG

descriptor seem superficially similar (and also have the same orientation) yet

include office and dinning room chairs, and vary more in their style (the less

similar chairs are highlighted in the figure).

Figure 3.7 displays a few more selections of k-NN results for movie posters

and chairs. In each set the top left image is the seed and its 7 nearest neighbors

are presented from left to right. In many cases, the similarity between images can

be both semantic and visual. We have deliberately selected cases which present

a purely semantic relation which may be very hard or impossible to capture

55

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Image retrieval results: K-NNs of images from the movie posters
and chairs datasets.

using image descriptors. The semantic connection between movie posters vary

greatly, and spans movies from the same genre (a), posters that have dominant

typographic elements (b), posters of old movies (c), or the same expression of the

faces in the poster (d). The semantic connection between chairs may be similar

style elements (e), similar overall shape (f), similar function (g) or even chairs

with wheels (h). The k-NN results for all movie posters and chairs in the dataset

can be found on the project’s website.

3.3.3 Synthetic Experiments

We next provide further analysis of our algorithm via synthetic experimental

results. The experiments were conducted on datasets with available ground

truth, and with answers from a simulated crowd. The simulated answer for a

given query was computed using a k-means algorithm, which has split the 20

56

images in the query into 4 clusters. Using synthetic answers allows us to test the

performance of our algorithm in a variety of scenarios.

Effect of locality. In the Introduction, we have stressed the importance of

using queries about local neighborhoods of images. To test this claim in isolation,

we have conducted a dedicated synthetic experiment, as follows. We have used a

set of 1000 colors sampled uniformly. Since the true similarities are known for

this image set, we could vary the locality of queries: for each query we started

from a seed image, then sampled the rest of the images from within a certain

distance from the seed image. We have then used the results of the queries to

compute the embedding as usual. We have observed an almost linear decrease

in the average precision of the computed 10-NN images as the distance between

images in each sample increases.

Co-occurrence of similar images. One of the indications for the effectiveness

of the progressive refinement in our algorithm is the frequent co-occurrence

of similar images in the same query. Ideally, as the similarity metric that we

compute converges to the true one, similar images are more likely to appear in

a query together. Moreover, the distance between pairs that appeared together

in many queries is expected to be more accurate, since more data is available.

Since the budget of queries is limited, each pair that is queried comes at a cost

of another pair for which there will be less available information. We show that

our algorithm effectively favors pairs which are close to each other and therefore

need more accurate information.

Figure 3.8 illustrates this. We simulate a two dimensional embedding of

images, where each point represents an image in the dataset. The distance

between each pair of points (or images) is taken from the embedding, which

simulates ground truth similarity. The dataset contains 400 images, and we ran

400 simulated queries, once using our algorithm and once with random queries.

We then select an arbitrary image (marked in gold) and count how many times

each image in the dataset has co-occurred with it. We rank the images according

to their mutual queries count. The top 20 images (5% of the dataset) that were

queried together the most with the golden image are colored bright red. The

next 20 images (5%) are colored dark red. The rest of the images (360 or 90%) are

colored light blue.

Figure 3.8(a) shows that using random query selection, the images that co-

occurred the most with the golden image are randomly scattered, as expected. In

contrast, using our algorithm to select the queries (Figure 3.8(b)), the frequently

57

(a) (b)

Figure 3.8: Visualization of the images that appeared in the same query as
the image marked in gold. The images are ranked by the number of mutual
queries and the top 10% images are colored red. (a) Mutual queries after 400
random queries. (b) Mutual queries after 400 queries using our algorithm.

co-occurring images are centered around the golden image. Evidently, we do

not spend queries on pairs which are known to be far away, since their distance

from each other matters less and is expected to be less accurate. This allows

our algorithm to better estimate the relative local similarities, and use them to

estimate the global similarities.

Figure 3.9: Number of correct 10-NN images as a function of number of
queries (left) and number of phases (center), and versus a triplet-based
algorithm (right).

Varying the algorithm parameters. We next execute our algorithm while

varying the value of two parameters: the total number of queries and the number

of phases, to demonstrate the impact of these parameters on the query results.

Figure 3.9(right) illustrates the effect of varying the total number of queries, for a

58

synthetic 1000 random color dataset, and 5 phases of our algorithm. As expected,

there is a positive correlation between the number of queries we use and the

quality of the results, measured by the size of the intersection between the true

10-NN images and the 10-NN images that we compute. This means that with a

greater budget we can improve the estimation of the similarity metric.

Figure 3.9(center) illustrates the impact of number of phases on the quality

of the results (using the same image set as above, the same quality metric,

and 1200 queries overall). The number of phases ranges from 0 (which is

equivalent to random query selection) to 5. Note that increasing the number

of phases increases the result quality, since recomputing the embedding more

frequently allows creating better queries. However, the margin by which the

quality improves decreases, so the difference between 4 and 5 phases is small.

Queries versus triplets. A common solution for collecting image comparisons

from the crowd is based on triplet queries of the form “Is image A more similar

to image B or to image C?”. We have already noted that one advantage of our

approach over the triplet-based one is that clustering queries provide context

for comparison. In this synthetic experiment we ignore the context, and focus

on the number of questions needed for each type of solution. As shown in

Figure 3.9(right), our algorithm’s performance using 1200 queries is comparable

to the triplet-based algorithm’s performance using 84000 queries.

3.4 Conclusion

In this chapter, we presented an efficient approach for estimating the similarity

of images based solely on the input of the crowd. Our system progressively

refines the images posed to the crowd, in order to obtain similarity comparisons

between images in the same neighborhood, allowing faster convergence to an

accurate similarity metric. In our experimental study we have used a particularly

small number of queries, and have shown that even on this basis we can obtain a

fair estimate of the semantic similarity. Our method can also be used to estimate

the similarity of any collection of objects that can be represented by images, such

as 3D shapes.

Limitations and future work. This work focuses on input from the crowd

alone. However, it is often the case that some clues for the semantic similarity

of images are available in the form of image features or textual context. Even if

59

these clues do not account for the full range of semantic connections, it would be

interesting to examine how to leverage them in conjunction with our algorithm.

This direction may benefit the method’s scalability, since in very large image

sets, the affordable number of queries might not even be linear in the size of

the set. A straightforward approach for integrating semantic clues would use

our algorithm to learn similarities for a small fragment of the image set, and

then apply machine learning techniques to complete the rest, using features

based on semantic clues (in the spirit of [Lun et al., 2015; Saleh et al., 2015;

Yi et al., 2012]). A more interesting solution may further combine the clues

within the query generation phases. This is non-trivial, since the usage of other

estimates can potentially cause semantically similar images to be overlooked.

Another challenging direction for future work includes a more elaborate

treatment of the uncertainty stemming from the crowd. Crowd members often

disagree on the similarity of images, or provide inconsistent answers. So far,

we have assumed that the embedding we perform mitigates the impact of such

inconsistencies. However, we may want to explicitly account for inconsistencies,

by a probabilistic modeling of the crowd’s behavior, e.g., as done in [Gomes

et al., 2011] for the purpose of clustering. It would thus be interesting to

develop probabilistic models dedicated for the learning of a similarity metric.

In particular, this method should support efficient computations, due to the

interactive nature of our algorithm.

60

4 SHED: Shape Edit Distance

One of the primary goals of shape analysis is understanding what type of

object is represented by the shape. In Section 1.1 We referred to this as the

basic semantic similarity between shapes. Naturally, the development and

evaluation of similarity measures in the 3D shapes domain is typically geared

towards classification of shapes into broad sets of categories [Tangelder and

Veltkamp, 2008]. Detection of inter-class differences has been emphasized over

quantification of intra-class differences, and little attention has been given to

estimating the similarity between shapes that belong to the same class. For

example, in the context of shape retrieval, the success of a method is often

evaluated based solely on the number of shapes that are retrieved from the same

class. The question whether the retrieved shapes are the most similar within

the class remains unanswered. However, with the large repositories available

today, organization and exploration of shapes from the same class have become

as important as categorizing shapes into different classes. These tasks require an

estimation of fine-grained shape similarities, including similarities in function,

style, and the part composition of a shape.

We aim to improve on existing methods by identifying both inter-class and

intra-class similarities. Our premise is that the semantic similarity humans

perceive between shapes is very much related to the part composition of each

shape and the similarity between each part and its counterpart. Thus, we

introduce shape edit distance to measure similarities between shapes. Intuitively,

the shape edit distance (SHED) measures the amount of effort needed to

transform one shape into the other, in terms of rearranging the parts of one

shape so that they closely match the parts of the other shape, or by adding and

deleting parts (Figure 4.1). SHED takes into account both the similarity of shape

structure and the similarity of individual shape parts. We follow a recent trend of

representing shapes as graphs of parts [Kalogerakis et al., 2012; Laga et al., 2013;

61

Figure 4.1: Shape edit distance: the distance between shapes is measured
by edit operations that transform the parts of one shape into corresponding
parts in the other shape.

Mitra et al., 2013; Zheng et al., 2014]; however, we use the matching between

graphs to extract a global measure of shape similarity.

The strength of the shape edit distance is its tolerance to part re-arrangements,

additions and deletions. Thus, SHED is flexible in quantifying the similarity

between shapes that have partial similarities, articulated parts or repositioned

parts. This leads to a similarity measure that accurately captures finer shape

differences, enabling a finer-grade organization of shapes. In contrast, other

traditional similarity measures are oblivious to the shape structure: for example,

the light field descriptor, popular in shape retrieval [Chen et al., 2003], is

highly sensitive to any type of shape difference or deformation, while in bag-

of-feature approaches, the similarity is invariant to the arrangement of shape

components [Bronstein et al., 2011; Litman et al., 2014].

We do not explicitly find a sequence of editing operations that transforms

one shape into the other. Instead, we indirectly estimate the edit distance by

using a part correspondence to extract a measure of similarity. First, shapes are

segmented into parts, and an approximate correspondence is computed between

the parts of each shape. We do not enforce a strict one-to-one correspondence,

since a part in one shape may be duplicated or missing from the second shape.

Instead, we apply constraints to the matching by associating additional costs

when parts change their context. Then, each match between two parts is

associated with a transformation cost: a weighted sum of terms that relate to

62

the differences in part geometry, scaling and position of the parts in the shape.

Finally, the edit distance of the shape is the aggregated cost of transforming

all parts in the correspondence. We use supervised learning for automatic

computation of the weights from examples, as opposed to manual tuning, which

could be unintuitive.

We demonstrate the advantage of using SHED with a series of experiments.

First, we evaluate SHED in a quantitative manner by constructing categorization

trees that can be used for shape exploration. We compare these trees to the

trees generated using other state-of-the-art similarity measures, as well as

ground truth trees created by expert users. In addition, we cluster shapes into

a predefined number of clusters and compare the results to clusters generated

from the ground truth trees. These evaluations demonstrate that the similarity

estimated by SHED is preferable to other distance measures and leads to a more

intuitive shape organization in the intra-class context. In the inter-class context,

we perform shape retrieval according to SHED and show that it yields comparable

results to state-of-the-art similarity measures. Finally, in settings where ground

truth data is not well defined, we show qualitative results of nearest neighbors

queries and embeddings of sets of shapes.

4.1 Related Work

This work comprises ideas such as shape comparison, graph edit distances and

part-based matching, which we discuss as follows.

Shape comparison, retrieval and exploration. There has been much work on

the development of shape similarity measures that can be used for retrieval,

exploration, or any type of shape comparison [Tangelder and Veltkamp, 2008].

In terms of shape retrieval and categorization, state-of-the-art approaches

that currently give the best performance are a combination of the light field

descriptor with bag-of-features and metric learning approaches [Li et al., 2012a].

For intra-class organization, Xu et al. [Xu et al., 2010] cluster a set of shapes

into different groups by factoring out the effect of non-homogeneous part

scaling and then establishing a correspondence between shape parts. Huang

et al. [Huang et al., 2013a] present an approach for fine-grained labeling of

shape collections. Similarly to our work, their goal is to learn a distance

metric within a class of shapes to capture finer shape differences. However,

63

their method follows a different paradigm than our work: the shapes are

globally aligned with an affine transformation followed by local deformations,

and the metric is learned on the aligned shapes. Individual parts obtained

from segmentation and their transformation are not considered as in our

approach. In the more restricted context of isometric matching, there has

been much activity in deriving signatures for shape comparison, such as

GPS embedding [Rustamov, 2007] or heat kernel signature [Ovsjanikov et al.,

2010]. Kurtek et al. [Kurtek et al., 2013] define a shape space and metric that

capture more comprehensive deformations than nearly isometric, but require

surfaces of the same topology. Bag-of-feature approaches [Bronstein et al., 2011;

Litman et al., 2014] are considered state of the art for retrieval of non-rigid

isometric shapes. The goal of these methods is to retrieve shapes with similar

topology from a collection of shapes in the same class, such as human models in

different poses. Hence, these methods are not suitable for comparison of shapes

with different part composition, structure or topology, which is the focus of our

work.

Shape exploration necessitates not only the estimation of the similarity of

shapes to a query shape, but also a way of organizing the shapes. Thus, different

strategies have been proposed for exploration, such as the use of a deformable

template [Ovsjanikov et al., 2011], region selection [Kim et al., 2012], dynamically

adapted views of close neighborhoods [Kleiman et al., 2013], or parameterization

of the template space [Averkiou et al., 2014]. In the work of Huang et al. [Huang

et al., 2013b], the goal is to obtain a qualitative organization of a collection of

shapes, since an organization based on a single similarity measure is not always

meaningful when comparing both similar and dissimilar shapes. Likewise, our

goal is to properly capture both inter- and intra-class differences. However,

instead of aggregating the scores of several similarity measures, we develop an

edit distance to estimate the shape similarity.

Graphs of parts for shape analysis. The idea of describing 2D shapes and

images as graphs of parts has appeared prominently in the field of computer

vision. A few representative works include matching shapes according to shock

graphs [Sebastian et al., 2004] and skeletons [Sundar et al., 2003], and matching

images according to graphs that represent their segmentations [Harchaoui

and Bach, 2007]. In the graphics literature, comparing shapes by matching

graphs was utilized for consistent joint segmentation [Huang et al., 2011] and

64

co-segmentation [Sidi et al., 2011] of a set of shapes. A group of works has

estimated the similarity between shapes by matching Reeb graphs, which are

constructed from functions defined on manifold shapes [Hilaga et al., 2001;

Barra and Biasotti, 2013]. Other works have explicitly segmented shapes and

created graphs of segments, with applications in shape synthesis [Kalogerakis

et al., 2012] and semantic correspondence [Laga et al., 2013]. These works are

directly related to the idea of modeling shapes by combining parts from different

models [Funkhouser et al., 2004]. Templates or part arrangements have also

been learned from collections, although these do not explicitly represent the

connectivity between parts [Kim et al., 2013; Zheng et al., 2014]. The fundamental

difference of our approach to these representative works is that we use the

matching between two graphs of parts as input to estimate the overall similarity

between two shapes; the correspondence between the graphs is the base for a

distance measure that enables us to quantify finer shape differences.

Graph matching and integer programming. The graph matching problem is

commonly posed as an integer quadratic programming problem, which is NP-

hard. There is a large body of work regarding the relaxation of such problems

to a tractable convex quadratic programming optimization. Two prominent

works in this area are the spectral correspondence presented by Leordeanu

and Hebert [Leordeanu and Hebert, 2005] and a relaxation of the quadratic

optimization by using bounding linear integer optimizations, proposed by Berg

et al. [Berg et al., 2005]. These relaxations often yield good results in practice

in the one-to-one matching scenario. However, performing gradient descent

from a continuous relaxation of the integer problem has been shown to yield

non-optimal permutations in most cases [Lyzinski et al., 2015]. Indeed, the

above methods perform poorly in our one-to-many scenario where a part can

correspond to several parts in the other shape. Recently, Kezurer et al. [Kezurer

et al., 2015] suggested lifting the problem to a higher dimension, followed by

a linear semi-definite relaxation. However, their method is computationally

expensive and does not extend easily to one-to-many scenarios. Bommes et

al. [Bommes et al., 2012] perform iterative relaxation of the problem where in

each iteration a single integer constraint is added to the optimization. We follow

a similar approach, but instead of adding hard constraints in each step, we adjust

the objective function to give precedence to solutions which are compatible with

previously selected matches.

65

Graph edit distance. The graph edit distance has been used to find a correspon-

dence between graphs in several areas of visual computing, such as computer

vision and medical imaging [Gao et al., 2010]. The idea of an edit distance

is attractive because it poses the problem of matching two graphs as finding

a sequence of operations that transforms one graph into the other. The edit

distance can consider not only the matching of similar nodes and edges, but

also their addition, duplication and deletion. However, finding the minimal

edit distance is NP-hard, so different heuristics have been proposed to compute

it. A common technique is to use a graph kernel that estimates the similarity

between two nodes according to their attributes and their neighborhoods in the

graphs [Neuhaus and Bunke, 2007]. Our shape edit distance does not require an

explicit sequence of operations, but an aggregation of all the changes necessary

to transform one shape into the other.

In the context of computer graphics, Fisher et al. [Fisher et al., 2011] used

graph kernels to estimate the similarity between graphs representing scenes

composed of multiple objects. In addition, Denning and Pellacini [Denning and

Pellacini, 2013] proposed a technique based on the edit distance to quantify

localized differences between two models. Their method is better suited for

comparing models generated by editing the same source shape. On the other

hand, our work is aimed at computing the similarity between any pair of shapes.

We derive the edit distance directly from a correspondence between graph nodes,

as opposed to the methods above based on graph kernels. In addition, we do

not require a one-to-one correspondence between the shape parts, but find a

one-to-many correspondence and quantify the edit distance without explicitly

searching for a sequence of editing operations. We explain the details in the next

section.

4.2 Shape Edit Distance

Input, output, and shape representation. The edit distance measure takes

as input two shapes and returns a real number representing the distance

(dissimilarity) between the shapes. The distance is lower for shapes that have

similar part geometry and structure, taking into account part rearrangements

and partial correspondence, and higher for shapes that differ in these aspects.

We represent each shape as a collection of parts and connections among these

parts, i.e., a graph of parts. Our method is generic and can take as input different

66

Figure 4.2: Difference between the semantic segmentation of two shapes in
(a) and (b), and their nearly convex decomposition in (c) and (d). Note how,
in (a) and (b), the bounding boxes of the parts corresponding to the candle
supports have considerably different sizes. In (c) and (d), both supports are
composed of small nearly convex segments with similar sizes.

shape representations, although in this work we represent the shapes as triangle

meshes. The first step in our method is the partitioning of input meshes into parts.

One possibility is to use semantic segmentation techniques [Shapira et al., 2008;

Shamir, 2008]. However, semantic parts do not have a clear definition and can

greatly vary among different shapes. Moreover, a semantic part can have a

complex geometry, making its comparison to other semantic parts non-trivial

(Figure 4.2). In a sense, the problem of comparing two complex segments can

be as involved as that of comparing two shapes. Instead, we segment the shapes

into simpler primitives that can be more easily analyzed. For this task, we use

the recent weakly-convex decomposition technique of van Kaick et al. [van Kaick

et al., 2014], which partitions the input shapes into nearly convex parts. Nearly

convex parts are easier to analyze, since they have a simpler geometry and can be

approximated well by their bounding boxes (Figure 4.2). In addition, the convex

decomposition of a shape is robust to small changes in the shape.

Our method also supports using a manual segmentation of the shapes

into parts, if such data is available. However, the results in this paper were

produced using the automatic weakly-convex decomposition to provide a

complete solution. The part graph is defined by creating a node for each nearly

convex part of the shape, and an edge between adjacent parts in the shape

segmentation.

67

Part similarities and matching. Given two shapes represented as graphs of

parts, our goal is to find a set of editing operations that transform the parts of one

shape into the parts of the other. Possible editing operations include deforming,

displacing, duplicating, adding, or removing parts. Then, a cost is associated with

each editing operation based on the extent of the transformation. The editing

costs are aggregated to produce the final shape edit distance between the two

input shapes.

In SHED, we derive the set of editing operations from a mapping between the

parts, since we can associate each pairwise match with a single operation. This

mapping depends on the similarity of parts to each other as well as their context

and the structure of the shape. For example, two parts with different geometry

can be matched if their neighborhood is similar. On the other hand, two parts

in different locations in the shape can be matched if their geometry is similar.

Thus, the mapping of each part depends not only on the part properties, but on

the mapping of all other parts of the shape. This makes the problem of finding

the correct matching intractable, so an approximate solution is necessary. To

this end, we formulate our objective in a quadratic form by constructing unary

terms for each match between two parts, and binary terms for pairs of matches,

representing only pairwise dependencies between matches. Then, we develop

a novel adaptive spectral matching technique to find an approximate solution

for this formulation. Our technique uses similar principles as the method of

Leordeanu and Hebert [Leordeanu and Hebert, 2005], but instead of solving the

optimization once and applying constraints in a greedy manner, we iteratively

improve the optimization by incorporating the constraints that arise in previous

steps. We explain the computation of the matching in detail in Section 4.3.

Given the mapping between two shapes, a cost can be computed for each

edit operation. The costs reflect the following aspects of shape similarity:

• Similarity of the geometry of the parts. For example, morphing a cylindri-

cal part into another cylindrical part is less costly than morphing a cube

into a cylinder, as the former pair is geometrically more similar than the

latter.

• Similarity of the structure of the part graphs. We allow nodes to move in

the part graph, with a cost proportional to the magnitude of the structural

change. Duplicated parts and additional parts also incur additional costs

as the structure of the shape changes.

68

• Scaling of the parts. The scale of each part plays a critical role in the global

similarity of a shape; different shapes can have similar graphs of parts

where each part is scaled differently relative to its neighborhood. Thus, we

introduce scale-specific terms in our formulation.

To produce a scalar similarity measure between two shapes, the terms described

above need to be weighted and aggregated. A question arises of how to determine

the weights for each term. Shape similarity is a subjective measure, so different

users might have different views on which shapes are more similar, which implies

that different weights are necessary. Moreover, while a set of manually selected

weights can provide a reasonable similarity measure for all shapes, it is clearly

beneficial to fine-tune the weights to better reflect the variation in a specific set.

Therefore, we employ a weight learning scheme that finds the optimal weights

to match a set of given distances. We elaborate on the details of the distance

formulation and the weight learning scheme in Section 4.4.

In Figure 4.3, we show the effect of considering these different factors in the

edit distance. We compare a 2D embedding created with multi-dimensional

scaling, according to the similarities given by SHED and the light field descriptor

(LFD). For SHED, we show the results of using three configurations of weights:

equal weights for each term (b), weights learned from user input giving high

priority to the scaling of parts (c), and weights learned from user input giving

high priority to the structural difference between parts (d). The example set

contains vases ranging from zero to four handles, some with a slightly thinner

body and some with a bigger base. The consistency of distances provided by

SHED yields an intuitive embedding that is true to the observed properties of

(a) (b) (c) (d)

Figure 4.3: Embeddings obtained with multi-dimensional scaling on a small
set of vases, based on the following distance measures: (a) LFD, (b) SHED
with default weights, (c) SHED with high weight for scaling changes, and (d)
SHED with high weight for structural changes.

69

the shapes, namely the number of handles and size of the parts. On the other

hand, the embedding generated by LFD groups shapes according to their overall

appearance, and does not take into account the finer details of the shapes. Thus,

LFD is not able to distinguish well between the vases that differ by the number of

handles, as their projected views are very similar.

4.3 Part Matching

The correspondence between two shapes can be represented as a list of matches

or pairings between two parts, one from each shape. The mapping does not

have to be one-to-one; a part in one shape can be duplicated and have several

matches in the other shape. However, we constrain the mappings so that if a part

is duplicated, then its matching parts in the other shape are not duplicated, to

ensure consistency in the editing operations. In other words, for each edge in the

matching graph, the degree of at least one of its vertices is one. The dependencies

between different possible matches are complex and can involve more than two

matches. We approximate such dependencies by using pairwise constraints only,

so the problem becomes tractable. We formulate the correspondence problem

using unary terms that depend on a single match, and binary terms involving a

pair of matches. Unary terms represent the likelihood of a match, or the affinity

between a part in one shape and a part in the other shape. Binary terms represent

the compatibility of two matches, i.e. the likelihood that both matches will be a

part of the same mapping.

Unary term. The unary term represents the amount of effort necessary to

morph the geometry of a part into another part. One of the advantages of

segmenting the shape into nearly convex parts is the simplicity of each part,

which allows us to use efficient descriptors to effectively distinguish between part

geometries. We use the shape distribution signatures to represent the geometry

of the parts [Osada et al., 2002]. Specifically, we use the D1 descriptor (also

called shell histogram [Ankerst et al., 1999]), which computes a histogram of the

distance between uniformly sampled points on the surface and the center of mass

of the part, and the D2 descriptor, which computes a histogram of the distance

between pairs of uniformly sampled points on the surface. These descriptors

are relatively simple and fast to compute, yet they are able to distinguish well

between parts with simple geometry such as nearly convex parts. The D1 and D2

70

histograms are computed for each part, and compared using χ2 distance, which

is defined as

dχ2(Hi, Hj) =

K∑
k=1

(Hi(k)−Hj(k))2

Hi(k) +Hj(k)
, (4.1)

where Hi, Hj are the input histograms, and K is the number of bins in each

histogram. The geometry cost is thus

C(i, j) = α · dχ2(D1i, D1j) + (1− α) · dχ2(D2i, D2j) (4.2)

where D1i and D2i are respectively the D1 and D2 histograms for part i, and α

controls the balance between the D1 and D2 descriptors. In our implementation

α = 0.5 (equal weights). The cost is transformed into an affinity using the natural

exponent:

U(i, j) = exp(−C(i, j)/σ), (4.3)

where σ is chosen such that the affinity values have a wide spread between 0 and

1. In our implementation σ = 0.5.

Binary term. The binary term represents the compatibility of one match (i, j)

to another match (k, l). When two shapes are similar, adjacent parts in one shape

are expected to be mapped to adjacent parts in the other shape. In addition, the

scaling factor of all matches is expected to be similar, since a match that has

significantly different scale than other matches in the mapping is less likely to be

correct. Therefore, we define a graph distance cost and a scaling factor cost for

each possible match.

The graph distance is defined for each pair of parts on the same shape as the

length of the shortest path between these parts in the shape graph. We use the

ratio between the graph distances of each match to measure the compatibility

between matches:

G(i, j, k, l) =
max(g(i, k), g(j, l))

min(g(i, k), g(j, l))
− 1, (4.4)

where g(i, k) is the graph distance between parts i and k on the same shape.

This term is zero when both pairs of parts have the same graph distance in their

respective shape, and is highest when one pair of parts is adjacent and the other

is not. Note that the cost is low when the graph distances between both pairs are

high, so adjacent parts have more weight in the total cost.

71

We define the scaling factor of each match as the ratio between the volumes

of the source and target part: s(i, j) = V OL(i)
V OL(j) . Similarly to the graph distance

cost, we use the ratio between the scaling factors of two matches as the scaling

factor cost:

S(i, j, k, l) =
max(s(i, j), s(k, l))

min(s(i, j), s(k, l))
− 1. (4.5)

The binary term is defined as the affinity between two matches, which is

computed from the above costs as follows:

B(i, j, k, l) = β · exp(−(G(i, j, k, l) + S(i, j, k, l))/2). (4.6)

The parameter β controls the weight of the binary term compared to the unary

term. If β is large, the structure of the shape takes precedence over the geometry

of parts, and if β is small, the geometry of the parts is more important than the

shape structure. If β = 0, the only consideration is the part geometry and the

correspondence resembles a bag-of-features approach. In our implementation,

β = 0.3.

Matching technique. There are several matching techniques in the litera-

ture that find an approximate solution to pairwise-constrained correspon-

dence problems, such as the spectral matching technique of Leordeanu and

Hebert [Leordeanu and Hebert, 2005], or the integer quadratic programming

relaxation proposed by Berg et al. [Berg et al., 2005]. The main idea of these

methods is that the pairwise constraints can be presented in a quadratic form

by constructing a matrix M of n ·m rows and n ·m columns, where n and m are

the numbers of parts in the first and second shape, respectively. The diagonal

of M contains the values of the unary term U(i, j), and the values outside of

the diagonal of M are the binary terms B(i, j, k, l). The best correspondence is

then represented by the binary vector x that maximizes the product xTMx and

does not break additional constraints, such as the requirement for one-to-one

mapping, etc. This poses an integer quadratic programming problem, which is

NP-hard, therefore different approximation methods are suggested in the above

methods.

Leordeanu and Hebert [Leordeanu and Hebert, 2005] propose to first solve

an un-constrained assignment problem in the continuous setting, where x is

allowed to have values in the range [0, 1]. This can be solved easily by setting

x to the normalized principal eigenvector of M . Then, the result vector x is

72

binarized in a greedy manner, taking into consideration additional constraints in

the process. In each step, the match with the highest value in x is marked, and

the values of the match and all conflicting matches in x are reduced to zero. This

process continues until all values in x are zeros, and the final mapping is returned

as the collection of marked matches. Since the constraints are not incorporated

into the cost matrix, the greedy binarization process is less successful when

several conflicting mappings are possible. While strictly conflicting matches are

filtered out, matches which are compatible with those conflicting matches might

still be selected since their score is computed before the conflicting matches

are discarded. This effect is most prominent in less constrained scenarios such

as ours. For example, we allow duplications of parts, but a matching in which

almost all parts are matched to the same part is valid but not desirable in most

cases.

To address these issues, we introduce adaptive spectral matching, which

incorporates the desired constraints directly into the objective function, leading

to a more consistent global solution to the correspondence problem. We

iteratively adjust the affinity matrix M according to the constraints and re-run

the eigenvector decomposition. In this way, not only conflicting matches are

excluded from the solution, but matches that are compatible with conflicting

matches are also less likely to be selected in subsequent steps. The iterative

method starts by setting x to the principal eigenvector of M , and then performs

the following steps:

• Mark the match with the highest value in x.

• Set the affinity of the match in M to 1.

• Incorporate constraints into M , by setting the affinities of each conflicting

match or pair of matches to zero. In our case, once a match (i, j) is selected,

the compatibility of matches that contain part i to matches that contain

part j becomes zero (i.e. the binary scores B(i, j′, i′, j) = 0 for each i′

and j′), since having both of these matches would mean that there is a

many-to-many relation between parts i and j.

• Set x to the principal eigenvector of the adjustedM , and ignore all matches

that are conflicting or were already selected.

• Repeat until there are no more valid matches.

73

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Matching between shapes. In each set, the source shape (left) is
matched with three nearest neighbors according to SHED (top), and three
additional shapes which are not neighbors (bottom). Multiple target parts
that match the same part in the source shape are marked with the same
color (see red line, top insets in (a)). A single target part that is matched with
multiple parts in the source shape is marked with mixed colors (see orange
and cyan lines, bottom insets in (a)). Note that minor differences in the
segmentation do not affect the matching or nearest neighbors computation
(a, d, f). On the other hand, significant differences in the segmentation may
lead to incorrect matching (b, e).

A few examples of matchings between segmented shapes using the above

algorithm are shown in Figure 4.4. In each sub-figure, the parts are color coded

according to their matching to the shape on the left. Parts that are matched to

the same part in the source shape have the same color. Parts that are matched

to more than one part in the source shape have the colors of all matching parts

mixed in a random pattern. For example, in the bottom left of (a), indicated

by cyan and orange lines, both the top and the base of the source vase were

matched to the top of the target vase, since it has no base. Similarly, for vases

with one handle, both handles of the source vase are matched to the parts of a

single handle.

Minor differences in the segmentation of similar shapes do not typically cause

significant changes in the matching. For example, as can be seen by the red line

in (a), two of the nearest neighbors of the shape have an extra part in the handle.

74

The extra part is matched to a similar part, and the rest of the matching remains

correct. Since the duplicated part is small, the similarity between these shapes

according to SHED remains high. Similarly, most of the shapes on the top rows

of (c), (d) and (f) have minor differences in their segmentation, yet they are

considered similar by SHED. On the other hand, significant differences in the

segmentation may lead to incorrect matchings, as can be seen in (b) and (e). The

vase in (b) is only segmented into four parts while similar vases are segmented

into seven parts. Thus the matching between these vases is weak, and matched

parts are not similar in their geometry, scale and structure. This causes SHED to

assign low similarity score to similar shapes.

4.4 Distance Formulation

The matching algorithm output is a list of matches (i, j) ∈ M. The transfor-

mation of each part in the shape is directly defined by the matches it belongs

to. Each transformation is associated with a cost which is determined by the

magnitude of change and the relative volume of parts in the shape. Below we

describe the four types of transformations and how their associated costs are

computed.

Change of geometry. For each match (i, j) in the mapping, the cost of de-

forming the geometry of one part into the other is computed using the same

formula for C(i, j) in Equation 4.2. Each term is weighted according to the

volume of the parts associated with it. For this, we define a match volume

m(i, j) = V OL(i) + V OL(j), and normalize it using the sum of volumes of all

matches m̂(i, j) = m(i, j)/
∑

(i,j)∈Mm(i, j). The geometry cost C(i, j) is then

weighted by the normalized match volumes m̂(i, j).

Change of scale. Since the global scale of two shapes can be different, the

change of scale between parts must be measured compared to the change of

scale in other matches in the mapping. Thus, the scaling costs are computed for

each pair of matches (i, j) and (k, l). The scale term is similar to the formula in

Equation 4.5 and measures the difference between the change of scale in the two

matches:

Cs(i, j, k, l) =
max(s(i, j), s(k, l))

min(s(i, j), s(k, l))
− 1. (4.7)

75

Note that Cs = 0 when the scale change of the two matches is exactly the same,

and Cs = 1 when the magnitude of change in one match is exactly twice than the

other match. The scale costs are weighted by m̂(i, j) · m̂(k, l), such that the total

weights of all the pairs which contain match (i, j) is m̂(i, j).

Change of position. To detect a part that changed position, it must be com-

pared with its environment, so the position costs are also computed for each pair

of matches (i, j) and (k, l). We compare the graph distance of parts i and k in

the first shape g(i, k) and the graph distance of parts j and l in the second shape

g(j, l):

Cp(i, j, k, l) = abs(g(i, k)− g(j, l)). (4.8)

Note that if a part is duplicated, we compare the adjacency with the most similar

instance, such that if several parts are duplicated together as a group they will

only be compared to parts in the same group. The position costs are also weighted

by m̂(i, j) · m̂(k, l).

Duplication costs. When a part is duplicated, there are two or more matches

with the same part. Each of the matches incurs the above costs if applicable.

In addition, we aggregate the volume of the shape that is being duplicated, by

summing the volume of all parts in all matches and subtracting the total volume

of the shapes. The remainder is the volume of all parts (in both shapes) that

appear twice or more in the matches. The duplication cost is normalized by the

total volume of the matches, so it represents the percent of matches that have

duplicated parts. It is formulated as:

Cd =

∑
(i,j)∈M

m(i, j)−
∑
i∈S

V OL(i)−
∑
j∈T

V OL(j)∑
(i,j)∈M

m(i, j)
, (4.9)

where S and T are the shapes being compared. Note that we do not define a

cost for parts that were added, since adding a new part can be thought of as

duplicating the most similar part and morphing it to the desired shape.

76

Aggregation and weight learning. The shape edit distance is formulated as a

weighted sum of the above costs:

SHED(S, T) = wg ·
∑

(i,j)∈M
m̂(i, j) · C(i, j)

+ws ·
∑

(i,j)∈M,(k,l)∈M
m̂(i, j) · m̂(k, l) · Cs(i, j, k, l)

+wp ·
∑

(i,j)∈M,(k,l)∈M
m̂(i, j) · m̂(k, l) · Cp(i, j, k, l)

+wd · Cd,

(4.10)

where wg, ws, wp and wd are the respective weights of the geometry term, scale

term, position term and duplication term. Since semantic similarity between

shapes is a subjective matter, it makes sense to learn the values of these weights

from user input. However, similarity or semantic distance between two shapes

cannot be quantified numerically by the user. Instead, we ask users to indirectly

provide the semantic similarity of a set of shapes by generating categorization

trees, which group together similar shapes in several levels of hierarchy. For more

details see Section 4.5. To learn the weights from the categorization trees, we

extract trios of shapes, where in each trio two shapes are similar (i.e. they belong

to the same subtree of depth two), and the third shape is semantically far (i.e.

it belongs to a different subtree). Each trio of shapes defines a relative relation

of the form “shape A is closer to shape B than to shape C”. Each categorization

tree provides many thousands of trios, from which we randomly select 1000

trios as a training set. To learn the weights from such relations, we employ

a weight learning scheme suggested by [Schultz and Joachims, 2004]. Each

relation between shapes A, B, and C, is transformed into a constraint of the form:

D(A,C)−D(A,B) ≥ 1 whereD(A,B) is the weighted distance between shapes A

and B. Then, a convex quadratic optimization is formulated and solved similarly

to a support vector machine. For more details see [Schultz and Joachims, 2004].

Using this method, we can fine tune the weights for a specific set of shapes

such as lamps or vases. For example, the scaling differences between parts affects

the semantic distance between lamps more than it affects the semantic distance

between vases. Alternatively, we can use trios from categorization trees of several

sets of shapes to learn a global set of weights. Using this method, we propose a

set of default weights (see Table 4.1) that would approximate well the semantic

similarity of any set of shapes. Note that these weights also reflect the relations

between the different units in which the different costs are measured.

77

Set Name Default Lamps Candles Vases Airplanes

Geometry 0.4795 0.4376 0.2779 0.4788 0.4285
Scale 0.1258 0.1921 0.1794 0.0256 0.0206
Position 0.0034 0.1216 0.1203 0.1697 0.0047
Duplication 0.3914 0.2486 0.4224 0.5396 0.5462

Table 4.1: Learned weights for different sets of shapes. Each column is
normalized such that its sum is one.

4.5 Evaluation

The distance between two shapes cannot be directly measured or estimated

numerically by a human observer, hence evaluating the accuracy of a similarity

measure is somewhat challenging. Still, we are able to compare SHED with state-

of-the-art distance measures, namely the light field descriptor (LFD) [Chen et

al., 2003] and the spherical harmonic descriptor (SPH) [Kazhdan et al., 2003],

and demonstrate its success in various applications. We evaluate the results

quantitatively using ground truth data for shape exploration and clustering, and

qualitatively for nearest neighbors queries and embedding, where ground truth

data is not well defined.

Datasets. We evaluate SHED using three sets of shapes from the COSEG

dataset [Wang et al., 2012] and three sets from PSB [Chen et al., 2009]. In addition,

we collected a set of airplanes from Google Warehouse and other online resources.

The airplanes and COSEG datasets were enriched by introducing finer intra-class

variation. The enriched sets include 100 lamps, 80 vases, 70 airplanes, and 40

candelabra, and contain shapes that vary in their part composition, geometry,

and articulation. The PSB sets include 20 humans, 20 hands and 20 Teddy bears,

which vary mostly in articulation.

Categorization trees. We present an application where categorization trees

of shapes are automatically generated for each enriched set. The resulting trees

hierarchically organize the shapes in a set and can be used for exploration. The

trees are created using Self-Tuning Spectral Clustering [Zelnik-Manor and Perona,

2004], which is a non-parametric clustering method, i.e., the number of clusters

in each set is selected automatically. We used this method recursively to build a

categorization tree for each distance measure (SHED, LFD, and SPH). An example

of the generated trees on a subset of shapes is presented in Figure 4.5, where the

78

SHED LFD SPH

Figure 4.5: Categorization trees automatically generated for a set of vases
according to SHED, LFD and SPH. The vases are colored according to their
shape style. Note that the organization of shapes is more consistent when
using SHED (3 categorization errors) than when using LFD or SPH (6
categorization errors each), as seen by the number of shapes with a different
color than their lowest level neighbors in the tree.

Figure 4.6: Comparison of automatically generated trees to ground truth
trees, according to the average difference in the degree of separation.

shapes are colored according to their shape style. Note that the tree generated

using SHED has fewer categorization errors. The generated trees for the full sets

can be found in the supplementary material.

To evaluate the quality of the generated trees in a quantitative manner, we use

multiple ground truth categorization trees. Since creating a single categorization

tree of a set may be subjective, we asked three expert users to independently

create a tree for each enriched set. All of the ground truth trees can be found

in the supplementary material. The ground truth trees are compared to the

generated trees by averaging the difference in the degree of separation (DoS)

between each pair of shapes in the trees. The DoS is defined as the length of

the path between two shapes in the tree [Huang et al., 2013b]. The average

difference of DoS measures whether shapes are organized in a similar manner

in two trees, without being influenced by the specific structure of each tree. To

compare the trees at different levels of granularity, we truncate the trees up to

79

SHED LFD SPH

Figure 4.7: Comparison of clustering results according to SHED, LFD, and
SPH on a set of lamps. The shapes are clustered into six groups and colored
according to their ground-truth clusters.

Figure 4.8: Comparison of automatically generated clusterings to ground
truth, according to the Rand Index (see text for details).

a given number of levels by connecting all the shapes in lower levels directly

to their ancestor at the lowest allowed level. The results for a level are given by

averaging the difference in DoS over all pairs of shapes and all ground truth trees.

The results are shown in Figure 4.6 (lower values imply trees closer to the ground

truth). The curve labeled GT denotes the average difference in DoS between

the ground truths. It indicates how much variation exists among the different

ground truths and establishes a bound for the accuracy. Note that trimming a tree

after two levels effectively provides a quantitative comparison of the first level of

clustering. Similarly, trimming the tree after three levels provides a comparison

of the clustering generated in the second level, and so on for other levels.

Clustering. In addition to the hierarchical clustering, we also experiment

with clustering when the number of clusters is known in advance. We cluster

each set of shapes using the self-tuning spectral clustering method mentioned

above [Zelnik-Manor and Perona, 2004], this time providing the number of

clusters as a parameter. We compute ground truth clusterings from each ground

truth tree by measuring the degree of separation between every two shapes, and

then using the computed DoS as a measure of shape similarity to cluster the

80

shapes with the same clustering method. We generate clusterings according to

SHED, LFD, and SPH and measure the difference between the generated clusters

and the ground truth using the Rand Index [Chen et al., 2009]. Figure 4.8 shows

the average Rand Index over all ground truths for each set and measure (higher

values imply clusters closer to the ground truth). The curve labeled GT denotes

the average Rand Index between the ground truth clusterings. It indicates the

level of agreement between clusterings generated from different ground truth

trees. Figure 4.7 shows visual results for a subset of lamps.

Shape retrieval. As a shape retrieval experiment, a nearest neighbors search

was performed for each shape according to SHED and LFD. Figure 4.9 shows

a selection of shapes from four different sets along with the retrieved nearest

neighbors. The full results containing each of the shapes as a query are available

in the supplementary material. The distances measured by SHED reflect changes

in part composition such as parts that change position on the graph or parts that

exist in one shape and not the other, as well as changes in geometry. Therefore,

shapes retrieved using SHED tend to have similar part composition. For example,

vases tend to have the same number of handles as the query shape (g, i), and

candelabra tend to have a similar number of candles (e). In contrast, some of the

shapes retrieved by LFD have a different shape structure (c, i). Additionally, SHED

retrieves shapes whose parts have a similar geometry to the parts of the query

shape (b, f, g, k), whereas shapes retrieved by LFD are more varied. Moreover,

SHED deals particularly well with articulations (a), added parts (b), and partial

shape matching (h), which pose a challenge to existing methods.

Ground truth data is not well defined for such tasks in intra-class scenarios,

where all the shapes belong to the same class. For such scenarios we show

qualitative results only. However, for inter-class scenarios, we can quantify

how many of the retrieved shapes belong to the same class as the query shape.

Figure 4.10 shows the precision recall curves obtained for all shapes from the

PSB sets using SHED, LFD and SPH. The curve labeled “SHED Equal Weights”

shows the results when all weights are set to 1. The curve labeled “SHED” shows

the results when using the default weights suggested in Table 4.1. Note that these

weights were learned using a different sets of shapes, and the results could be

improved further by fine-tuning the weights specifically for the PSB sets.

Embedding to a lower dimension. Another important application that

benefits from defining a more accurate distance measure between shapes is

mapping a set of shapes onto a low dimensional manifold. We use standard

81

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.9: Shape retrieval for four sets, ordered by similarity to a query. In
each example, the shape on the center left is the query, the first row are the
5 nearest neighbors ordered according to SHED, and the second row are the
neighbors ordered according to LFD.

multi-dimensional scaling (MDS) to generate an embedding of a set of shapes in

two dimensions. In Figure 4.3 we show a toy example comparing the embedding

generated by SHED and LFD for a small set of vases. For inter-class similarity

estimation, we show in Figure 4.11 the MDS embedding of shapes from the PSB

sets using SHED, LFD, and SPH. The figure clearly shows that SHED produces an

intuitive map with a significant distinction between different sets, while LFD and

SPH tend to produce less organized maps where shapes of different sets are mixed

together. This experiment and the quantitative evaluation in Figure 4.10 allow us

to conclude that SHED is effective when used to separate shapes into different

classes (inter-class context), while the previous experiments show that SHED is

able to appropriately quantify finer shape differences, which is of importance in

an intra-class context.

Weights. The weights for the sets of lamps, candles, vases, and airplanes

were learned from training sets of 1000 trios each, obtained from the ground

truth of each set separately. In addition, default weights were learned using

a training set of 1000 trios, obtained from the ground truth of all four sets

collectively. The default weights were used to produce the results for the PSB sets

in Figures 4.11 and 4.10. The weights for each set are given in Table 4.1.

82

Figure 4.10: Precision-recall on sets of articulated shapes.

Timing. Our method can be decomposed into two parts: finding the matching

between two shapes and computing the SHED according to a given matching

and weights. The computation time of the matching algorithm described in

Section 4.3 depends on the number of parts in each shape, and takes up to

5 seconds for shapes with up to 20 parts. Given the matching and weights,

computing the SHED takes a fraction of a second, and the computation of

the entire set of 100 lamps, or 4950 pairs of shapes, takes a total of 9 seconds.

Segmenting the shapes using [van Kaick et al., 2014] takes up to 5 minutes per

shape. Note that the segmentation method can be easily replaced. In some cases

the segmentation of shapes can be given as input, in which case the method is

very fast to compute.

4.6 Conclusion

We introduce SHED, an edit distance that quantifies shape similarity based

on a structural comparison of shapes. The shape edit distance captures re-

arrangements, additions, and removals of parts. We show a variety of applications

which benefit from an accurate distance measure between shapes. Finally, we

demonstrate that SHED leads to a more intuitive estimation of the similarity

between two shapes than state-of-the-art methods, when comparing shapes

within the same class as well as shapes from different classes.

83

SHED LFD SPH

Figure 4.11: Embedding obtained with multi-dimensional scaling on a set
of articulated shapes with three classes. The insets show the distance matrix
for each method, where dark green is low distance and white or light green is
high distance. Note how SHED groups the shapes into their respective classes,
while the distance matrices and embeddings given by LFD and SPH are less
organized.

Future work and limitations. The current formulation of SHED takes into

account the similarity of the shape parts and the shape structure in terms

of connectivity of the parts. Additional relationships between parts can be

considered, for example, the difference in rotation of pose after an alignment of

matched parts. Incorporating pose considerations may constitute an advantage

on sets where the pose of the shape parts is one of the main dissimilarity factors,

while it may be less suitable for more general sets where pose-invariance is

sought.

An adequate segmentation of the shapes is required for the computation of

SHED. In general, segmentation is an ill-posed problem. As a practical solution,

we opted to use a segmentation into approximately convex parts, although other

segmentation methods can be used. For example, methods that aim at obtaining

a close-to-semantic segmentation of the shape are possible, although their usage

would require the introduction of more sophisticated measures to compare the

geometry of parts.

Finally, distances between shapes are subject to interpretation and are

dependent on the semantics of the shapes. Thus, we would like to conduct

an investigation to gain insight on how humans perceive finer shape differences,

to enhance our edit distance. Quantification of intra-class distances is still an

open avenue for further research.

84

5 Symmetry Aware Correspondence

Finding correspondence between shapes is a fundamental problem in com-

puter graphics. Many existing methods aim to find point-to-point correspon-

dences [Kim et al., 2011; Ovsjanikov et al., 2012], or a mapping between feature

points [Berg et al., 2005; Leordeanu and Hebert, 2005; Kezurer et al., 2015].

Shapes with intrinsic symmetry pose a particularly difficult problem for such

methods, as there can be many solutions which are equally likely to be correct;

an inverted map where the left side of one shape is mapped onto the right side of

the other and vice versa may not incur additional cost. Moreover, in some cases

combinations of several solutions are also likely, e.g. a subset of correspondences

from one solution and another subset from another solution.

To solve this problem, some methods factor the symmetry out of the map

computation, thus finding a map which may be correct, inverted, or a non-

continuous blend of several symmetric maps [Ovsjanikov et al., 2012; Sahillioǧlu

and Yemez, 2011]. Another prominent method, Blended Intrinsic Maps [Kim

et al., 2011], outputs a continuous map, which is usually not inverted, as long

as there is some isometric distortion between the source and target. This is a

result of the natural distortion in elbows and knees due to pose changes, which

is non-symmetric. However, the blended intrinsic maps are computationally

expensive and may be distorted, and they do not allow matching partial shapes

or shapes with different topology.

We propose to use a symmetry aware correspondence between segments

as an in-between step. The matching between segments can later be used to

improve the point-to-point map between the shapes. Our symmetry aware

correspondence factors out symmetries by allowing all symmetric segments to

match to each other as a clique. Thus, the correct and inverted maps are merged

onto the same map. Clearly, our method does not produce the same level of

details as existing methods. However, there are numerous advantages to this

85

(a) (b) (c) (d)

Figure 5.1: Overview of our symmetry aware correspondence method. The
two shapes (presented here one above the other) are first mutually segmented
into consistent segments (a) and a shape graph is created for each segmented
shape (b). Note that the shape graphs are in fact isometric even though the
shapes vary greatly in pose. Then, the shape graphs are matched without
breaking node symmetry. In (c), the value of each node marks the graph
distance from the root node, and matching nodes are shown with the same
color. The matching between graphs induces a symmetry aware matching of
the segmented shapes (d).

combined approach of using segments and factoring symmetry out. In most

cases, there is only one solution to the optimization, which allows a straight

forward optimization which is very quick. The solution is more stable and there

is less distortion between segments compared to state of the art methods. We

show that this correspondence is still useful for significantly improving point-to-

point maps. In addition, we can easily identify parts that do not have a match

in the other shape, and discard those parts from the point-to-point map. This

allows partial matching of shapes with different topology. Another application

of our method is detection of intrinsic symmetries within a shape by matching

the shape to itself. The symmetry detection is also a lot quicker and more stable

than existing methods.

Figure 5.1 provides an overview of our method. First, we segment the pair

of shapes using HKS descriptor [Sun et al., 2009]. This co-segmentation is

semantically consistent between the two shapes, i.e. the segment edges are

86

usually in a similar semantic position. Then, we build shape graphs from the

segments. Geometric data is not incorporated in the shape graphs, which

indicate only the structure of each shape. The shape graphs are matched in a

symmetry aware manner using a sparse graph matching technique. This provides

the matching between segments, or segment symmetry detection when a shape

is matched to itself.

To compute point-to-point maps between the shapes, we use the functional

maps framework of [Ovsjanikov et al., 2012]. In that paper, a matching

between segments is used to improve point-to-point maps. The segments used

in [Ovsjanikov et al., 2012] are sparse (they do not cover the entire shape) and

non symmetric, whereas we provide a dense map in which every segment can

have multiple connected components which denote symmetric parts in the

shape. Using the symmetry aware correspondence between matches significantly

improves the point-to-point map.

We evaluate our method in a number of experiments. First, we compare the

correspondence between segments to blended intrinsic maps, or BIM [Kim

et al., 2011]. We compare to these point-to-point maps by transferring the

segments from the source shape to the target shape using the map and counting

the number of vertices that are mapped to the correct segment. This is

possible for datasets where the mapping between vertices is known, such as

TOSCA [Bronstein et al., 2008], SCAPE [Anguelov et al., 2005] and FAUST [Bogo et

al., 2014]. For datasets where there is no ground-truth mapping between shape,

such as SHREC [Li et al., 2012a], and for inter-class correspondence such as

matching a human shape to a gorilla, we provide visual results which can be

assessed in a qualitative manner. Typically, the segments that BIM create on the

target shape are more distorted than our method, and tend to be cut in different

semantic locations from the source segments.

In another experiment, we generate point-to-point maps according to the

matching between segments, using the functional maps method of [Ovsjanikov

et al., 2012]. We show that using the symmetry aware segments significantly

improve the accuracy of the map, even without producing a one-to-one mapping

between segments.

87

5.1 Related Work

Methods for computing correspondences between shapes can be divided into

two categories according to their output: dense correspondence maps and

sparse correspondence between feature points on the shape. A survey of shape

correspondence methods is provided in [Van Kaick et al., 2011]. In recent years,

there were a few prominent works in the area of dense correspondence maps.

In [Ovsjanikov et al., 2012], a functional maps approach was presented, in

which a mapping between function spaces on the shape is sought instead of a

mapping between points on the shape. This way, many global constraints can

be formulated as linear constraints on the functional maps, such as landmark

correspondence and segment correspondence. We use this framework to

derive point-to-point maps from our symmetric segment correspondences in

Section 5.4. Another state-of-the-art work is Blended Intrinsic Maps or BIM [Kim

et al., 2011], in which several maps with locally low distortion are blended to

form a single map which has low distortion everywhere. Sparse correspondence

between feature points is an equally important problem, since sparse corre-

spondences can usually be transferred into dense correspondence maps using

stable algorithms. Recent works in this area include [Sahillioǧlu and Yemez, 2011;

Kezurer et al., 2015].

Shapes with intrinsic symmetry have been identified as a challenge in many of

these works. The problem is inherent to the task of intrinsic shape matching: for

shapes with perfect intrinsic symmetry, there are several symmetric maps, and

none of them can be defined as more correct than the other. As most optimization

methods become unstable when there is more than one correct solution, shapes

with symmetry commonly produce less accurate maps or non-continuous maps

in which each part is taken from a different potential map. As a result, the

evaluation of some methods is done with respect to symmetry, i.e. every potential

symmetric solution is considered correct [Ovsjanikov et al., 2012; Sahillioǧlu and

Yemez, 2011]. Alternatively, the ambiguity can be resolved using a small set of

landmark correspondences, which are often manually selected [Ovsjanikov et al.,

2010]. In BIM [Kim et al., 2011], maps are always continuous, and thus symmetric

maps can not blend and only one of the potential maps is selected as the final

output. In addition, most shapes with bilateral symmetries (e.g. humans) have

intrinsic differences between front and back (such as feet, knees, and elbows),

which can be used to find the correct map. Still, no solution is given for the

generic symmetric case (e.g. octopuses, ants, etc.).

88

Some methods have specifically targeted matching between symmetric

shapes. In [Ovsjanikov et al., 2013], a symmetry map is used to compute a

set of symmetric correspondences between shapes. However, for this method

a reference shape with a known symmetry map is necessary. This work is an

extension of the symmetry invariant function space which is used in [Lipman et

al., 2010] for symmetry detection using self-correspondence graphs. Recently,

a stable region correspondence has been proposed [Ganapathi-Subramanian

et al., 2016]. In this work, points on the shape are ordered according to their

feature function values, and the rank of each point is used to find correspondence

between stable regions. Since the values of the feature functions are discarded

and only the rank is used, this method can successfully find stable regions in

shapes with very different geometry. This approach is quite similar to our work:

we also use the relative value of the feature function rather then the absolute

value, by quantizing the feature function and using it to construct a shape graph.

However, we produce finer correspondences and smaller symmetry orbits. For

example, in the stable region approach, extremities of the shape such as the legs

and tail often belong to the same stable region, while we are able to distinguish

between front legs, hind legs, tail, etc.

5.1.1 Segmentation and shape graphs

Correspondence between segmented shapes is related to co-segmentations of

shapes, which many works have explored [Sidi et al., 2011; Kalogerakis et al.,

2012]. We elaborate on a few of these works in Section 4.1. Note that the goal of

these works is usually a semantic high-level segmentation of the shapes, while we

aim to find correspondences between smaller segments which are more useful

for subsequent matching of feature points. Shape Edit Distance (see Chapter 4)

uses a similar notion of segmenting shapes into parts and matching the graph

of parts, and indeed was an inspiration to this work. However, in this work we

aim to identify correspondences between shapes with different geometry, while

SHED uses the shape graphs to identify the most similar shapes and accentuate

the differences between them. Thus, in SHED the nodes of the shape graphs are

rich with geometric data and are more sensitive to geometry changes.

Shape graphs were also used in [Singh et al., 2007], where the Mapper graphs

were introduced and used for shape similarity. We are inspired by these graphs

and use a similar construct to compute the symmetry aware correspondence

between segments.

89

5.2 Consistent Segmentation

The input to our method is two 3D meshes. The first step is to co-segment

these shapes in a consistent manner. By that we mean that the edges between

segments have a similar position in both shapes. For example, if there is a cut

above the knee in one shape, there should be a cut above the knee in the other

shape, even if their geometry and triangulation are different. The consistency of

the segmentation is important for two reasons. First, a consistent segmentation

implies that two similar shapes produce a similar shape graph which is easy

to match. Second, a matching between consistent segments induces a more

accurate matching between vertices. Note that we do not seek a semantic

segmentation of the shape; a semantic part may be cut into several segments.

To consistently segment the shapes, we use a quantization of the heat kernel

signature or HKS [Sun et al., 2009]. We compute the HKS for each shape, and

quantize the HKS value into k bins, so each vertex on the shape has a label

between 0 and k − 1 based on its HKS value. Typically, the lowest HKS value is

located at the center of mass of the shape and the highest HKS values are at the

shape’s extremities. We then segment the shapes by forming a segment for each

connected component of vertices with the same label.

In the next step, we build a shape graph in which each segment is connected

to its neighboring segments. The approach of representing shapes using a graph

of segments is similar to the Mapper graphs of [Singh et al., 2007]. They use

overlapping clusters to create a shape graph, in which two clusters are connected

if there is an overlap between them. It has been shown that the Mapper graphs are

useful for computing shape similarity and produce similar graphs for different

poses of the same shape. Our shape graphs have no overlap between segments,

and we deliberately use simpler shape graphs with fewer nodes to capture

common elements of shapes with significantly different geometry. Our goal

is to use these shape graphs to compute a matching between the shapes. An

example of consistent segmentation is given in Figure 5.1(a). The shape graphs

that correspond to these segmented shapes are shown in Figure 5.1(b).

Often, similar shapes have similar HKS values, which in turn generate

isomorphic shape graphs. However, small changes in the shape may cause

the HKS value to differ such that extra segments are generated. These differences

may occur for some selections of k (the number of bins in the quantization) and

not for others. The question arises, how to select k. We find that there is a range

90

of values that produce acceptable graphs. For small values of k, the resulting

segments are quite large and not very indicative of the shape structure. For very

large values of k, the segments are usually too small and the shape graph does not

convey well the structure of the shape. In our experiments, we found that values

between 6 and 12 produce acceptable results. To set the exact value of k we follow

the assumption that shapes which are very different from each other are not

likely to produce similar shape graphs. Thus, we assume that isomorphic graphs

will produce a better correspondence between the shapes than non-isomorphic

graphs, and select a value of k which produces isomorphic graphs of the two

shapes, if such k exists. For most isometric pairs of shapes, there is a value of k

which produces isomorphic graphs: in the sets of TOSCA and SCAPE, isomorphic

shape graphs can be found for 95% of pairs. If there is no selection of k which

produces isomorphic graphs, we select the k which produces the most similar

graphs of the two shapes in terms of the number of nodes and their connectivity.

The combination of using a stable descriptor (HKS) and searching for

segmentations with similar structure generates consistent segmentations for

shapes from the same set (for example two human shapes) as well as shapes from

different sets, such as matching a cat to a dog or a man to a gorilla.

5.3 Symmetry Aware Matching

After we find a consistent segmentation, we compute a symmetry aware matching

between the shape graphs. We do not keep geometric data of each segment in

the shape graph. Instead, we rely only on the graph structure of the shape to

compute the matching. This allows us to match very different shapes as long as

they have the same intrinsic structure. The only geometric information we keep

for the graph is the root of the shape. We define the root of the shape graph as the

segment in the shape which has the lowest HKS value. This segment is typically

located at the center of mass of the shape. Then, we measure the graph distance

between each node and the root node and assign this value as the label of the

node. Therefore, a node in the shape graph can only be identified by its distance

from the root node and its connectivity to other nodes, and symmetric branches

cannot be distinguished from each other. Branches which are not symmetric can

be distinguished by their position in the shape graph. For example, the nodes of

each leg have the same properties, while the branches of an arm and a leg can

91

be distinguished by the position of the head, even if each branch has the same

number of nodes.

Our symmetry aware matching technique takes advantage of these properties

to quickly identify symmetric nodes in the graph structure. Finding a matching

between isomorphic graphs is usually simple and can be done in several different

ways. To provide a solution for non-isomorphic graphs as well, we use a

spectral method that produces a sparse vector in which non-zero elements mark

correspondences between nodes. This method matches groups of symmetric

nodes in one shape to their matching symmetric nodes in the other shape.

5.3.1 Formulation

We follow the quadratic assignment model definitions and formulations pre-

sented in SHED (see Section 4.3). Similarly, we define a unary term and a binary

term and use them to construct an affinity matrix M . The unary terms describe

the relation between a segment i from one shape and a potentially matching

segment j in the other shape. The binary terms describe the compatibility

between a match between two segments (i, j) and another match between

segments (k, l). For example, if segments i and k are adjacent, and so are j

and l, there is a high compatibility between the matches. But if one pair of

segments is adjacent and the other is not, there is a low compatibility between

the matches.

The unary cost is the sum of the following three components:

g0(i): The graph distance between the segment and the root node.

H(i): The histogram of graph distance. For each segment, we count how many

segments are adjacent to it (or have a graph distance of 1), how many segments

have a graph distance of 2, and so on. This forms a vector which signifies the

connectivity of the segment.

gl(i): The distance of the segment from the closest leaf of the shape graph, or a

node with a degree of 1. This term is useful to distinguish between branches of

different length in the shape graph (for example an arm with 4 segments vs. a leg

with 5 segments).

The first order cost is then given by the following formulation:

C(i, j) = ‖g0(i)− g0(j)‖+ ‖H(i)−H(j)‖+ ‖gl(i)− gl(j)‖ . (5.1)

92

The affinity between the segments is computed similarly to Section 4.3 by:

U(i, j) = exp(−C(i, j)/σ), (5.2)

where in our experiments σ = 0.5.

For the binary term, we compute the difference of graph distances:

dg(i, j, k, l) = ‖g(i, j)− g(k, l)‖ , (5.3)

where g(i, j) is the graph distance between nodes i and j, and the difference of

the unary cost between the matches:

du(i, j, k, l) = ‖C(i, j)− C(k, l)‖ , (5.4)

where C(i, j) is as defined above. Local structural deformations in a shape, such

as missing or additional parts, affect the unary costs of nearby parts by the same

amount (for example, adding a constant amount to C(i, j) for every part j in

the same branch). The second term du is not affected by these changes, so it is

helpful when matching partial shapes or shapes with partial matches. Again, the

affinity between the two matches is computed by:

U(i, j) = exp(−(dg(i, j, k, l) + du(i, j, k, l))/σ), (5.5)

with σ = 0.5.

5.3.2 Sparse spectral matching

In common spectral correspondence techniques such as [Leordeanu and Hebert,

2005], the discretization (or binarization) of the output vector is driven by the

constraints. For example, when searching for a one-to-one matching, the first

selected match for each node determines that there are no other matches in

that row. The discretization ends when there are no more possible matches, or

for one-to-one matching, when all elements have exactly one match. A similar

process is used in the matching needed for SHED (see Section 4.3). The iterative

adaptation continues as long as there are possible matches. In our symmetry

aware matching, groups of segments of any size can match groups of segments in

the other shape. Thus, a matching in which all the segments of one shape match

all the segments of the other shape is valid (though not very useful). A different

93

method is necessary to guide the discretization. By examining the continuous

output vector, we can see that it is dense and unpredictable. The scale of values

changes greatly between different nodes in the shape graph. In addition, for

some nodes, there are a few significant values in the vector, while for others, all

the values are of similar scale. Thus, a threshold which might work for some of

the segments may not be effective for others.

In our case, we can use the properties of the shape graphs and the structure

of the symmetry aware correspondence to find a sparse solution to the matching

problem. The sparse solution we find is easy to discretize as there is a clear

distinction between correct matches and incorrect matches. The sparse vector

can also be interpreted as a confidence value, so when a node has no matches of

high value, we consider it a low confidence node and discard it from the matching.

This is useful for matching partial shapes or shapes with some added parts.

Our solution is based on the fact that the shape graphs contain only discrete

information (the graph distance from the root node), and therefore many nodes

share similar properties. In fact, the first order term of many nodes is equal. We

can compute a matching between shape graphs using first order data only, for

example by matching each node i with the nodes j which have the smallest first

order costsC(i, j) (see Equation 5.1). We observe that in most cases, the matching

found by the first order data is locally correct, but includes incorrect symmetries.

For example, the front legs are correctly matched to the front legs but also

matched to the hind legs, or the head is correctly matched to the head but also

matched to the tail. Thus, our goal is to break the incorrect symmetries and keep

only the globally consistent ones: for example, front legs can be distinguished

from hind legs by using the position of the head in the shape graph. However, we

would like to keep the local relations between nodes, such as the order of nodes

in a branch.

Suppose the matrix M contains only the first order data on its diagonal, and

zeros everywhere else. If the values on the diagonal are unique, the primary

eigenvector of M is 1 for the highest first order affinity, and 0 everywhere else.

However, the first order values are not unique. First, compatible matches tend to

have similar values, for example in a perfect matching the values of all matches

that belong to it would have an affinity of 1. Second, in our discrete shape graphs

multiple matches can have the exact same value, and therefore the same affinity.

Thus, the primary eigenvector of M consists of a random vector in the subspace

that is spanned by multiple correct matchings, and zeros everywhere else. Note

94

that this vector is sparse. In other words, the eigenvector contains values that

correspond to a mix of matches from all the possible matchings which are equally

likely. These contain symmetries that originate from intrinsic symmetry in the

shape, such as left-to-right symmetry in the shapes we experiment with, as well

as symmetries that originate in the first order data for which we have additional

information, such as matching of arms to legs. We would like to collapse the

space of solutions such that only the correct matching forms a possible solution

to the optimization. Unfortunately, for shapes with intrinsic symmetry, we do

not have enough information to distinguish the correct matching and symmetric

matching. However, we have additional information to distinguish arms from

legs or the head from the tail.

Our goal is to restrict the eigenvector to a specific subspace which spans

only the correct solution (up to intrinsic symmetry), while keeping it sparse. To

this end, we use the second order data we have as a tie-breaker ; it should direct

the optimization towards a specific solution within the subspace of possible

solutions spanned by the first order data, while staying within that subspace,

without overriding the first order data. We thus scale the second order data to a

small value such that it can not affect the first order data, for example by dividing

it by the number of non-zero elements in the matrix M . This has the effect of

producing a sparse vector within the subspace, which respects the second order

data as well as the first order data. The sparse vector can be easily discretized by

searching for a gap in the values that correspond to the matches of each node.

If such a gap does not exists, it means the confidence of the node is low and we

do not match it. Note that this scheme relies on the discrete nature of the shape

graphs, and would not work in a setting where the nodes contain geometric data

which may deem some matches more likely than others.

To summarize, our algorithm consists of the following steps:

• Computing the first order and second order data terms.

• Scaling the second order terms to a small fraction, for example by dividing

them by the number of non-zero elements in the matrix.

• Computing the first eigenvector of the affinity matrix M .

• Discretizing the sparse output eigenvector.

An example of the matching between graphs is shown in Figure 5.1(c). Nodes

with the same color are matched to each other. The induced matching between

shape segments is shown in Figure 5.1(d).

95

5.4 Evaluation

5.4.1 Qualitative evaluation

To start the discussion of our results, we show a gallery of a few examples for

various shapes in Figure 5.2. Similar colors denote matching segments, and the

dark gray areas in (e) are segments for which no matching was found. In (a) and

(b), we show typical results for shapes from the same category. An isometric

shape graph can be found for almost all of the shapes of the same category. Note

that for many categories, relatively small segments can be matched, as can be

seen in (b). Using small segments increases the accuracy of the correspondence

and is beneficial for the various application discussed below, such as point-to-

point maps, symmetry detection and mapping feature points. In (c) and (d) we

show cross-category correspondence, such as matching a man to a woman (c)

and a man to a gorilla (d). These shapes have large variations in both pose and

intrinsic geometry, yet the shape graphs are still isometric and in most cases the

segments are cut in roughly the same positions (e.g. above the neck, below the

knee, etc). An exception to this the knee area in (d) where there is a misalignment

of the segments due to the short legs of the gorilla. Still, this discrepancy covers a

local area and most of the shape is matched correctly.

In (e), we show an example where the shape graph is not isometric within

the same category. In our experiments this is a rare case which happens for less

than 5% of the shape pairs. In this particular case, the legs of the cat show a lot of

flexibility, and essentially emerge from slightly different locations in the torso,

thus breaking the symmetry of the shape. As a result, the left leg is not matched.

Note that our method discards correspondences with low confidence rather than

forcing a match for every segment. Thus, the incomplete matching is still useful

for the applications described below without introducing errors.

In (f), we show a matching between two centaur shapes. While most of the

symmetries are identified correctly (front legs, arms, etc), the tail is considered

symmetric to the hind legs. This is a limitation of our approach, since in this case

the branches in the shape graph that correspond to the tail and back legs have

exactly the same length and connectivity, and cannot be distinguished according

to the shape graph without additional geometric data.

In Figure 5.3, we show an example of matching shapes with substantially

different shape graphs. The shape graphs are also displayed. The numbers on the

96

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Symmetry aware correspondence between shapes.

graph denote the node value, or graph distance from the root node, and the colors

of the nodes denote the correspondence between nodes (nodes in the second

shape which were not matched are black). Note that our correspondence method

matches the similar sections of the shapes while leaving dissimilar sections

unmatched. Thus, this matching is also useful for the applications described

below. Interestingly, even though the shape graph is quite different many of the

segments are still cut in similar semantic positions of the shape (for example in

the legs and neck).

5.4.2 Comparison to BIM

To evaluate the consistency of the segments we find and the accuracy of

the matching between these segments, we compare the segment-to-segment

correspondence with BIM [Kim et al., 2011]. The comparison is performed

by mapping the segments using the point-to-point map and then counting

the percent of vertices which are in the correct segment, weighted by the area

covered by each vertex. Ideally, for sets where we have a ground truth mapping

of vertices, the segment that contains the source vertex should be mapped to

the segment that contains the target vertex. For this quantitative experiment,

97

(a) (b) (c)

Figure 5.3: Matching shapes with non-isometric shape graph. (a) Symmetry
aware correspondence between a horse shape and a dog shape. (b) The shape
graph of the horse shape. (c) The shape graph of the dog shape.

we map shapes for which we have ground truth in the TOSCA [Bronstein et al.,

2008], SCAPE [Anguelov et al., 2005] and FAUST [Bogo et al., 2014] datasets. The

results are shown in Table 5.1.

We also provide qualitative results where the slipping of segments is visible,

as shown in Figure 5.4. In each subfigure we show the source shape in the

center, the matching segments in our method on the left, and the matching

segments using BIM on the right. Note that in (a), the matching of the segments

in the head, chest and legs is more accurate with our method than with BIM.

Similarly, in (b), the difference in matching is particularly visible in the head

and arms, where the segmentation of our method more closely resembles the

source segmentation. In (c), we provide an example from SHREC dataset [Li et

al., 2012a] where there is no ground truth matching between vertices. The head

is matched more accurately with our method than with BIM. Another advantage

of our method that is illustrated in this example is the matching of partial shapes.

In BIM, the tail of the bull is matched to the significantly smaller tail of the

pig, causing a lot of distortion in that area. Similarly, the BIM between two

shapes always include the entire shape, even for partial shapes. In our method,

we can identify segments which do not have a match in the other shape, and

consequentially provide a better mapping for the segments which do have a

match.

98

(a)
(b)

(c)

Figure 5.4: Comparison of our method to BIM. In each subfigure, the
segments of the central shape were transferred to the shape on the left using
our method and to the shape on the right using BIM. Matched segments are
shown in the same color.

5.4.3 Point-to-point maps

The correspondence between segments can be used to enhance point-to-point

maps between the shapes. For this, we use the functional map framework

of Ovsjanikov et al. In [Ovsjanikov et al., 2012], the point-to-point maps are

improved using large and sparse segments (i.e., the segments do not cover the

whole shape). Note that the segments in that work are not symmetric. Naturally,

breaking the symmetry of our segments prior to computing the maps can be

helpful. However, in this work we aim to show that the matching between

symmetric segments, which can be found quickly and in a stable manner, can

still greatly improve the point-to-point maps without resolving the ambiguity.

The advantage of using our approach is the use of dense and stable segments:

99

Figure 5.5: Examples of segment-level symmetry detection.

our segments cover the whole shape and are smaller and more accurate than the

large segments used in [Ovsjanikov et al., 2012].

To evaluate the point-to-point maps, we measure the average geodesic error

between points in the target mesh and their ground truth correspondence.

In [Ovsjanikov et al., 2012], the functional maps framework was evaluated

using WKS descriptors and functional constraints based on matching segments.

We compute point-to-point maps using WKS descriptors only (without using

segments), using only constraints based on our symmetric segments, and using

both. The results are presented in Table 5.2. Our results show a significant

improvement of the geodesic error when using our symmetric segments, even

without resolving the symmetric ambiguity. Interestingly, when applying the

segment-based constraints, the results do not further improve with the addition

of WKS descriptors. This suggests that our symmetric segments are fine and

accurate enough to capture a lot of the information contained in the point-

specific WKS descriptors.

5.4.4 Symmetry detection

Another application of our method is segment-level symmetry detection. Again,

we sacrifice the precision of point-to-point symmetry maps to provide a solution

which is extremely quick and stable; the entire process of symmetry detection

consists of computing the HKS function for the two shapes and solving a single

eigenvector problem of moderate size. Symmetry detection is computed by

matching a shape with itself. This generates symmetric segments, or cliques

of segments where all pairs match to each other. This matching can easily

100

Category Symmetry Aware Correspondence BIM

TOSCA
cat 0.804639 0.870072
centaur 0.941216 0.937418
david 0.966373 0.946934
dog 0.936976 0.907939
gorilla 0.952195 0.938877
horse 0.924313 0.935324
michael 0.962636 0.951064
victoria 0.961154 0.953213
wolf 0.982075 0.991781

SCAPE 0.921698 0.914941

FAUST 0.855928 0.822367

Table 5.1: Comparison of Symmetry Aware Correspondence to BIM.

be translated into a segment-level symmetry map by filtering out all the self-

matching segments.

Note that in this application, we always match a shape graph to itself. This

provides a guarantee that there is no slipping of segments, and that the matching

is always performed on isometric graphs. Thus, the only possible errors in the

matching are due to the structure of the shape graph. For example, if the branches

of a leg and a tail are of the same length in the shape graph, they are considered

symmetric even though the geometry of the shape suggests otherwise. These

errors can happen when too few segments are used and they fail to capture the

details of the shape, or when too many segments are used and the finer details

of the shape are interfering with the symmetry detection. We find that for most

shapes, the method is stable when the number of bins k is between 6 and 10. A

higher number of bins is generally preferable for this application as it generates

smaller segments.

A few examples of our symmetry detection are given in Figure 5.5. Note

that our method is robust to isometric distortion, as visible particularly in the

two shapes on the left. In the centaur shape, it can be seen that our method

distinguishes well between similar elements with structural differences such

as arms, hind legs and front legs. Finally, note that our method can produce

segments which are small enough to indicate symmetry between feature points,

as suggested in the next section.

101

Category WKS WKS + Segments Only Segments

TOSCA
cat 6.271 5.821 5.821
centaur 5.197 4.089 4.089
david 6.371 4.091 4.091
dog 7.409 4.394 4.398
horse 10.422 6.402 6.403
michael 6.845 5.465 5.465
victoria 5.169 3.850 3.853
wolf 1.414 1.206 1.204

Per-category average: 6.137 4.415 4.416
Per-shape average: 6.552 4.830 4.831

SCAPE 0.104 0.055 0.055

Table 5.2: Evaluation of point-to-point maps. The numbers represent the
average geodesic error (lower is better).

5.4.5 Matching of feature points

Another possible application of our method is using the matching between

symmetric segments to compute symmetry aware matching between feature

points. This can be used for matching feature points between two shapes or

for detecting symmetric feature points when matching a shape with itself. For

example, in the recent work of [Kezurer et al., 2015], between 10 and 20 feature

points were matched for most shapes (due to the high complexity of the method,

a higher number of feature points is generally not feasible). In our method, the

shapes are typically segmented to between 15 and 40 segments. Since feature

points are laid out rather uniformly over the shapes, it is likely that the segments

produced by our method are such that each segment contains no more than a

single feature point, at least for the majority of segments. These feature points

can be matched directly according to the segments that contain them. In case

a few feature points fall in the same segment, the matching between unique

feature points can be used to resolve the ambiguity.

5.5 Conclusion

We present the concept of symmetry aware correspondence, in which we

compute correspondence between shapes while factoring out the symmetric

102

components. We develop a method for computing symmetry aware correspon-

dence between shape parts. The level of details in this mapping is not as high

as in conventional correspondence methods which produce matching between

feature points or point-to-point map. For the price of this compromise, we get

the following advantages. Our method is extremely efficient, requiring a single

extraction of an eigenvector. The method is computationally stable, and it is

robust to various changes in the shape, such as differences in body types or

extreme pose changes. We are also capable of matching shapes of different types

with different geometry, as long as the structure of the shape is similar. It is also

important to note that within the limited domain of matching shape segments,

our method outperforms state-of-the-art shape correspondence methods.

We show that a point-to-point map can be improved by using our symmetric

segments, even without breaking the symmetry. We also show an application of

detecting segment-level symmetry in a shape. As a possible future application,

transferring the segment-level correspondence to a correspondence between

feature points is potentially quite simple, both for symmetry detection and

matching between shapes.

An interesting direction for future development is breaking the symmetry. To

this end, we propose a two-step solution, consisting of first finding the symmetry

aware correspondence, and then computing a non-symmetric (i.e. one-to-

one) correspondence while making sure parts in the same branch are matched

consistently. State of the art correspondence techniques have known limitations

when considering shapes with intrinsic symmetries, and this solution has the

potential to be significantly less complicated than computing a non-symmetric

matching in one shot, without prior information.

103

104

6 Conclusion

6.1 Summary of Contributions

In Chapter 2, we presented Dynamic Maps, a method for browsing and ex-

ploration of shapes, images, or any other collection of elements that can be

represented by a thumbnail image. Using our method, thumbnails are laid

out on a seemingly infinite grid which can be navigated in any direction like a

standard map. The map is built dynamically in real-time after every user action,

and the currently displayed patch is always continuous and smooth, i.e. near

by images are similar to each other. This is unlike global mapping solutions

which are bound to have discontinuities within the map. The local nature of

the map also allows it to be created in a very efficient manner, and in constant

time, regardless of the number of elements in the dataset. Thus, it is suitable

for massive online collection of images. We implemented and evaluated the

system for a dataset of several thousand 3D shapes and another dataset of one

million images. The evaluations show that this method is generally preferable to

common browsing methods such as relevance feedback (or “similar images” in

modern search engines).

In Chapter 3, we proposed a method for learning a similarity measure for

a collection of images from crowdsourced data. Once again, the method is

applicable to any type of data that can be represented by a thumbnail image.

The advantage of a crowd-based similarity measure is that it contains a lot of

semantic information: it is directly derived from human perception of similarity.

This work has two main contributions. First, the definition of a suitable question

to ask the crowd. Since semantic similarity between elements is relative to the

context, this is not a trivial task. We showed that clustering queries provide a lot

of information and require a relatively small amount of effort from each crowd

worker. Second, the development of an iterative technique that uses previous

105

answers to construct the most effective queries in the next phase. Using the

iterative process, one can gather a lot of information from a relatively small

number of queries.

In Chapter 4, we constructed an automatic shape similarity measure which

is more semantic in nature than previous state-of-the-art methods. We defined

the shape edit distance (or SHED) as a summary of all the transformations that

a shape has to go through to become the other shape. To this end, our method

segments the shape into parts, and compares the parts’ geometry and position in

order to find a matching between the two shapes. The matching between parts

defines the transformations of each part, which are aggregated to form the shape

edit distance. We evaluated our method on a variety of fundamental applications,

and proved that it is more effective at capturing the semantic similarity between

shapes, or a similarity measure which is closer to the human perception of

similarity, than existing state-of-the-art shape similarity measures.

A notable additional contribution of this work is the method that computes

the matching between shape parts. Existing methods for matching graphs

or feature points usually focus on finding a one-to-one matching or one-

to-many matching, and perform poorly for other correspondence structures.

Since SHED requires a more complex correspondence structure, we developed

adaptive spectral matching (see Section 4.3), an extension of spectral correspon-

dence [Leordeanu and Hebert, 2005]. Adaptive spectral matching iteratively

adapts the optimization to selected matches within the correspondence. The

iterative process directs the optimization towards a solution which is more

consistent with the structure of correspondence. Adaptive spectral matching can

be used for one-to-one or one-to-many correspondences as well, and in most

cases it outperforms the original spectral correspondence method of [Leordeanu

and Hebert, 2005].

In Chapter 5, we delved deeper into the realm of correspondences between

shapes and between shape parts. We proposed symmetry aware correspondence,

a type of correspondence in which symmetric elements can be matched to

groups of symmetric elements, without resolving the symmetry into a one-

to-one matching. We developed a method that computes this symmetry in

an extremely efficient manner. The output is a less detailed correspondence

than one-to-one matching, but for this cost one gains greater accuracy, greater

stability, and a much shorter computation time. This can be viewed as a

decoupling of computing the correspondence and resolving the symmetry. After

106

the symmetric correspondence is found, it can potentially be resolved into a

one-to-one matching as a post-process, instead of solving the two problems

at the same time. Even without resolving the symmetry, the symmetry aware

correspondence is useful. We showed that it can improve non-symmetric point-

to-point correspondences using the functional maps framework [Ovsjanikov

et al., 2012]. In addition, our method can be used for segment-level symmetry

detection or symmetry detection of feature points on the shape.

6.2 Future Directions

In recent years, image similarity measures have become more and more semantic

in nature. This is due to advancements in deep learning and convolutional

networks, as well as the high availability of textual context for images as training

data [Krizhevsky et al., 2012; Wang et al., 2014; Szegedy et al., 2015]. Deep learning

methods for image retrieval require massive training sets with millions of element

with some sort of ranking among them. Still, the ranking of training data is usually

computed automatically by hand-crafted features. It would be interesting to

combine this approach with a crowdsourcing technique for gathering image

similarity. Our crowdsourcing solution can be used to measure similarities

between key images in the dataset, while automatic features propagate the

computed similarities to other images.

A key element of our crowdsourcing solution is the efficient query selection.

This algorithm can also aid the computation of deep learning networks which

require many queries. For example, in [Wang et al., 2014], triplets were sampled

based on a relevance score for computational reasons. Our clustering based

queries may drastically reduce the necessary computation, thus allowing a larger

portion of the training data to be used effectively.

While the image similarity ranking has greatly improved, the image browsing

experience has not changed much in recent years. In the last decade, commercial

image search providers have kept the same paradigm of keyword search with a

rarely used relevance feedback feature (or “similar images”). Introducing a more

flexible paradigm such as our Dynamic Maps into commercial image search

can have a great effect on the quality of image search and in particular image

browsing where the end result is not specific or known in advance. The Dynamic

Maps framework is an initial step towards this goal. There are many directions for

future research such as combining our method with keyword search, constructing

107

local patches in a non-greedy manner, and reflecting past user actions (rather

than just the current state) in the choice of which images to display next. Another

interesting direction for future development is using Dynamic Maps on a mobile

device, for example for personal photo collections. Such collections typically

have a more limited keyword support if any, and are large enough to be hard to

manage or navigate using the common paradigm of a list ordered by the date the

picture was taken.

In the shapes domain, leading similarity measures are far less advanced than

in the image domain. One of the difficulties in shape analysis is the balance

between local features and global context. For example, in a human shape,

a cylindrical area could be a part of a finger, an arm or the torso, and global

information is necessary to determine which of these options is correct. In

SHED, we offer a such a balance by computing a shape graph of nearly convex

parts [van Kaick et al., 2014] The shape graph provides global context for the

local geometric properties computed for each segment. Similarly, our Symmetry

Aware Correspondence uses the global context of segments that are created using

local features. In both SHED and Symmetry Aware Correspondence, failure cases

are mostly a result of inconsistencies in the segmentation. Coarse segmentations

tend to be more consistent but provide less information on the finer details of

the shapes. Fine segmentations tend to be less consistent since small changes

in the geometry may significantly change the shape of a segment or introduce

additional segments. Thus, future work should carefully examine the balance

between level of details in the shape and the consistency of the segmentation. A

possible direction for future research is combining several representations with

different level of details.

Shape similarity can also make use of deep learning from large amounts of

tagged data, similarly to image similarity measures. Such methods are becoming

popular recently (e.g. [Qi et al., 2016]) but are not yet as refined as methods for

image similarity. In these methods, the representation of the shape is a rendering

or a volumetric rasterization of the shape into voxels. This representation mimics

the 2D representation used for images, but it does not fit naturally with common

sparse 3D shape representations such as triangular meshes or point clouds, and

contains a lot of redundant information. An interesting question is whether the

representation of a shape as a collection of segments or a shape graph can be

used in a deep learning approach.

108

References

[Akgül et al., 2010] Ceyhun Burak Akgül, Bülent Sankur, Yücel Yemez, and Fran-

cis Schmitt. Similarity learning for 3d object retrieval using relevance feedback

and risk minimization. Int. J. Comput. Vision, 89:392–407, September 2010.

[André et al., 2009] Paul André, Edward Cutrell, Desney S Tan, and Greg Smith.

Designing novel image search interfaces by understanding unique character-

istics and usage. In IFIP Conference on Human-Computer Interaction, pages

340–353. Springer, 2009.

[Anguelov et al., 2005] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller,

Sebastian Thrun, Jim Rodgers, and James Davis. Scape: shape completion

and animation of people. In ACM Transactions on Graphics (TOG), volume 24,

pages 408–416. ACM, 2005.

[Ankerst et al., 1999] Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel,

and Thomas Seidl. 3D shape histograms for similarity search and classification

in spatial databases. In Proc. Int. Symp. Advances in Spatial Databases, pages

207–226, 1999.

[Atmosukarto et al., 2005] Indriyati Atmosukarto, Wee Kheng Leow, and Zhiyong

Huang. Feature combination and relevance feedback for 3d model retrieval.

In Multimedia Modelling Conference, 2005. MMM 2005. Proceedings of the 11th

International, pages 334–339. IEEE, 2005.

[Averkiou et al., 2014] Melinos Averkiou, Vladimir G. Kim, Youyi Zheng, and

Niloy J. Mitra. ShapeSynth: Parameterizing model collections for coupled

shape exploration and synthesis. Computer Graphics Forum (Eurographics),

33, 2014.

109

[Back and Oppenheim, 2001] Jonathan Back and Charles Oppenheim. A model

of cognitive load for {IR}: implications for user relevance feedback interaction.

Information Research 2001, 2001.

[Bar-Hillel et al., 2005] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and

Daphna Weinshall. Learning a mahalanobis metric from equivalence con-

straints. Journal of Machine Learning Research, 6(6):937–965, 2005.

[Barra and Biasotti, 2013] Vincent Barra and Silvia Biasotti. 3D shape retrieval

using kernels on extended Reeb graphs. Pattern Recognition, 46(11), 2013.

[Bederson, 2001] B.B. Bederson. Photomesa: a zoomable image browser using

quantum treemaps and bubblemaps. In Proceedings of the 14th annual ACM

symposium on User interface software and technology, pages 71–80. ACM, 2001.

[Berg et al., 2005] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object

recognition using low distortion correspondences. In Proc. IEEE Conf. on

CVPR, pages 26–33, 2005.

[Biswas and Jacobs, 2014] Arijit Biswas and David Jacobs. Active image cluster-

ing with pairwise constraints from humans. International Journal of Computer

Vision, 108(1-2):133–147, 2014.

[Bogo et al., 2014] Federica Bogo, Javier Romero, Matthew Loper, and Michael J.

Black. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Piscataway,

NJ, USA, June 2014. IEEE.

[Bommes et al., 2012] David Bommes, Henrik Zimmer, and Leif Kobbelt. Prac-

tical mixed-integer optimization for geometry processing. In Curves and

Surfaces, pages 193–206. Springer, 2012.

[Bronstein et al., 2008] Alexander M Bronstein, Michael M Bronstein, and Ron

Kimmel. Numerical geometry of non-rigid shapes. Springer Science & Business

Media, 2008.

[Bronstein et al., 2011] Alexander M Bronstein, Michael M Bronstein, Leonidas J

Guibas, and Maks Ovsjanikov. Shape google: Geometric words and expressions

110

for invariant shape retrieval. ACM Transactions on Graphics (TOG), 30(1):1,

2011.

[Brooke, 1996] John Brooke. Sus-a quick and dirty usability scale. Usability

evaluation in industry, 189:194, 1996.

[Cao et al., 2006] Liangliang Cao, Jianzhuang Liu, and Xiaoou Tang. 3d object

retrieval using 2d line drawing and graph based relevance reedback. In

Proceedings of the 14th annual ACM international conference on Multimedia,

MULTIMEDIA ’06, pages 105–108, New York, NY, USA, 2006. ACM.

[Chang et al., 2015] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran

Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv

preprint arXiv:1512.03012, 2015.

[Chaudhuri and Koltun, 2010] Siddhartha Chaudhuri and Vladlen Koltun. Data-

driven suggestions for creativity support in 3d modeling. In ACM Transactions

on Graphics (TOG), volume 29, page 183. ACM, 2010.

[Chen et al., 2000] Chaomei Chen, George Gagaudakis, and Paul Rosin.

Similarity-based image browsing. In Int. conference on intelligent information

processing, pages 206–213. Citeseer, 2000.

[Chen et al., 2003] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhy-

oung. On visual similarity based 3D model retrieval. Computer Graphics

Forum, 22(3):223–232, 2003.

[Chen et al., 2009] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser.

A benchmark for 3D mesh segmentation. ACM Trans. on Graph (SIGGRAPH),

28(3):73:1–12, 2009.

[Chew et al., 2010] Boon Chew, Jennifer A Rode, and Abigail Sellen. Understand-

ing the everyday use of images on the web. In Proceedings of the 6th Nordic

Conference on Human-Computer Interaction: Extending Boundaries, pages

102–111. ACM, 2010.

111

[Chung and Yoon, 2011] EunKyung Chung and JungWon Yoon. Image needs in

the context of image use: An exploratory study. Journal of Information Science,

page 0165551511400951, 2011.

[Coifman and Lafon, 2006] Ronald R Coifman and Stéphane Lafon. Diffusion

maps. Applied and computational harmonic analysis, 21(1):5–30, 2006.

[Combs and Bederson, 1999] Tammara TA Combs and Benjamin B Bederson.

Does zooming improve image browsing? In Proceedings of the fourth ACM

conference on Digital libraries, pages 130–137. ACM, 1999.

[Cour et al., 2006] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Balanced

graph matching. In Advances in Neural Information Processing Systems,

volume 19, pages 313–320, 2006.

[Croft et al., 2001] W.B. Croft, S. Cronen-Townsend, and V. Lavrenko. Relevance

feedback and personalization: A language modeling perspective. In DELOS

Workshop: Personalisation and Recommender Systems in Digital Libraries,

2001.

[Dalal and Triggs, 2005] Navneet Dalal and Bill Triggs. Histograms of oriented

gradients for human detection. In Computer Vision and Pattern Recognition,

2005., volume 1, pages 886–893. IEEE, 2005.

[Davidson et al., 2013] Susan B Davidson, Sanjeev Khanna, Tova Milo, and

Sudeepa Roy. Using the crowd for top-k and group-by queries. In International

Conference on Database Theory, pages 225–236. ACM, 2013.

[Denning and Pellacini, 2013] Jonathan D. Denning and Fabio Pellacini.

MeshGit: Diffing and merging meshes for polygonal modeling. ACM Trans. on

Graph (SIGGRAPH), 32(4):35:1–10, 2013.

[Deselaers et al., 2008] Thomas Deselaers, Daniel Keysers, and Hermann Ney.

Features for image retrieval: an experimental comparison. Information

Retrieval, 11(2):77–107, 2008.

[Elad et al., 2002] Michael Elad, Ayellet Tal, and Sigal Ar. Content based retrieval

of vrml objects: an iterative and interactive approach. In Multimedia 2001,

pages 107–118. Springer, 2002.

112

[Fan et al., 2009] Jianping Fan, Daniel A Keim, Yuli Gao, Hangzai Luo, and

Zongmin Li. Justclick: personalized image recommendation via exploratory

search from large-scale flickr images. IEEE Transactions on Circuits and

Systems for Video Technology, 19(2):273–288, 2009.

[Fisher et al., 2011] Matthew Fisher, Manolis Savva, and Pat Hanrahan. Charac-

terizing structural relationships in scenes using graph kernels. ACM Trans. on

Graph (SIGGRAPH), 30(4):34:1–12, 2011.

[Frome et al., 2007] Andrea Frome, Yoram Singer, Fei Sha, and Jitendra Malik.

Learning globally-consistent local distance functions for shape-based image

retrieval and classification. In International Conference on Computer Vision,

pages 1–8. IEEE, 2007.

[Funkhouser et al., 2004] Thomas Funkhouser, Michael Kazhdan, Philip Shilane,

Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David

Dobkin. Modeling by example. ACM Trans. on Graph (SIGGRAPH), 23(3):652–

663, 2004.

[Ganapathi-Subramanian et al., 2016] Vignesh Ganapathi-Subramanian, Boris

Thibert, Maks Ovsjanikov, and Leonidas Guibas. Stable region correspon-

dences between non-isometric shapes. Computer Graphics Forum (SGP),

2016.

[Gao et al., 2010] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey

of graph edit distance. Pattern Anal. Appl., 13(1):113–129, 2010.

[Gomes et al., 2011] Ryan G Gomes, Peter Welinder, Andreas Krause, and Pietro

Perona. Crowdclustering. In Advances in neural information processing

systems, pages 558–566, 2011.

[Harchaoui and Bach, 2007] Z. Harchaoui and F. Bach. Image classification with

segmentation graph kernels. In Proc. IEEE Conf. on CVPR, pages 1–8, 2007.

[Hearst, 2009] Marti Hearst. Search user interfaces. Cambridge University Press,

2009.

113

[Hilaga et al., 2001] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and

Tosiyasu L. Kunii. Topology matching for fully automatic similarity estimation

of 3D shapes. In Proc.SIGGRAPH, pages 203–212, 2001.

[Hu et al., 1999] Paul Jen-Hwa Hu, Pai-Chun Ma, and Patrick YK Chau. Evalua-

tion of user interface designs for information retrieval systems: a computer-

based experiment. Decision support systems, 27(1):125–143, 1999.

[Huang et al., 2011] Qixing Huang, Vladlen Koltun, and Leonidas Guibas. Joint

shape segmentation with linear programming. ACM Trans. on Graph (SIG-

GRAPH Asia), 30(6):125:1–12, 2011.

[Huang et al., 2013a] Qi-Xing Huang, Hao Su, and Leonidas Guibas. Fine-

grained semi-supervised labeling of large shape collections. ACM Transactions

on Graphics (TOG), 32(6):190, 2013.

[Huang et al., 2013b] Shi-Sheng Huang, Ariel Shamir, Chao-Hui Shen, Hao

Zhang, Alla Sheffer, Shi-Min Hu, and Daniel Cohen-Or. Qualitative orga-

nization of collections of shapes via quartet analysis. ACM Trans. on Graph

(SIGGRAPH), 32(4):71:1–10, 2013.

[Huck et al., 1974] Schuyler W Huck, William Henry Cormier, and William G

Bounds. Reading statistics and research. Harper & Row New York, 1974.

[Jing et al., 2012] Yushi Jing, Henry Rowley, Jingbin Wang, David Tsai, Chuck

Rosenberg, and Michele Covell. Google image swirl: a large-scale content-

based image visualization system. In Proceedings of the 21st International

Conference on World Wide Web, pages 539–540. ACM, 2012.

[Kalogerakis et al., 2012] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne

Koller, and Vladlen Koltun. A probabilistic model of component-based shape

synthesis. ACM Trans. on Graph (SIGGRAPH), 31(4):55:1–11, 2012.

[Kazhdan et al., 2003] Michael Kazhdan, Thomas Funkhouser, and Szymon

Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D

shape descriptors. In Symp. on Geom. Proc., pages 156–164, 2003.

[Kazhdan et al., 2004] Michael Kazhdan, Thomas Funkhouser, and Szymon

Rusinkiewicz. Symmetry descriptors and 3d shape matching. In Proceedings

114

of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,

pages 115–123. ACM, 2004.

[Kezurer et al., 2015] Itay Kezurer, Shahar Z Kovalsky, Ronen Basri, and Yaron

Lipman. Tight relaxation of quadratic matching. Computer Graphics Forum,

24(5), 2015.

[Kim et al., 2011] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser.

Blended intrinsic maps. In ACM Transactions on Graphics (TOG), volume 30,

page 79. ACM, 2011.

[Kim et al., 2012] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi,

and Thomas Funkhouser. Exploring collections of 3D models using fuzzy

correspondences. ACM Trans. on Graph (SIGGRAPH), 31(4):54:1–11, 2012.

[Kim et al., 2013] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaud-

huri, Stephen DiVerdi, and Thomas Funkhouser. Learning part-based tem-

plates from large collections of 3D shapes. ACM Trans. on Graph (SIGGRAPH),

32(4):70:1–12, 2013.

[Kleiman et al., 2013] Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-Or.

Dynamic maps for exploring and browsing shapes. Computer Graphics Forum

(SGP), 32(5):187–196, 2013.

[Kleiman et al., 2015a] Yanir Kleiman, Joel Lanir, Dov Danon, Yasmin Felber-

baum, and Daniel Cohen-Or. Dynamicmaps: Similarity-based browsing

through a massive set of images. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 995–1004. ACM, 2015.

[Kleiman et al., 2015b] Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung,

and Daniel Cohen-Or. Shed: shape edit distance for fine-grained shape

similarity. ACM Transactions on Graphics (SIGGRAPH Asia), 34(6):235, 2015.

[Kleiman et al., 2016] Yanir Kleiman, George Goldberg, Yael Amsterdamer, and

Daniel Cohen-Or. Toward semantic image similarity from crowdsourced

clustering. The Visual Computer, 32(6):1045–1055, 2016.

[Kohonen, 1990] T. Kohonen. The self-organizing map. Proceedings of the IEEE,

78(9):1464–1480, 1990.

115

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural networks. In Advances

in neural information processing systems, pages 1097–1105, 2012.

[Kruskal and Wish, 1978] Joseph B Kruskal and Myron Wish. Multidimensional

scaling, volume 11. Sage, 1978.

[Kurtek et al., 2013] Sebastian Kurtek, Anuj Srivastava, Eric Klassen, and Hamid

Laga. Landmark-guided elastic shape analysis of spherically-parameterized

surfaces. Computer Graphics Forum, 32(2pt4):429–438, 2013.

[Laga et al., 2013] Hamid Laga, Michela Mortara, and Michela Spagnuolo. Geom-

etry and context for semantic correspondences and functionality recognition

in man-made 3D shapes. ACM Trans. on Graph, 32(5):150:1–16, 2013.

[Lasram et al., 2012] A. Lasram, S. Lefebvre, and C. Damez. Procedural texture

preview. In Computer Graphics Forum, volume 31, pages 413–420. Wiley

Online Library, 2012.

[Layne, 1994] Sara Shatford Layne. Some issues in the indexing of images.

Journal of the American Society for Information Science (1986-1998), 45(8):583,

1994.

[Leifman et al., 2005] George Leifman, Ron Meir, and Ayellet Tal. Semantic-

oriented 3d shape retrieval using relevance feedback. The Visual Computer,

21(8-10):865–875, 2005.

[Leordeanu and Hebert, 2005] Marius Leordeanu and Martial Hebert. A spectral

technique for correspondence problems using pairwise constraints. In

Proceedings of the International Conference on Computer Vision, pages 1482–

1489, 2005.

[Leordeanu et al., 2009] Marius Leordeanu, Martial Hebert, and Rahul Suk-

thankar. An integer projected fixed point method for graph matching and

map inference. In Advances in neural information processing systems, pages

1114–1122, 2009.

[Li et al., 2012a] B Li, A Godil, M Aono, X Bai, T Furuya, L Li, R López-Sastre,

H Johan, R Ohbuchi, C Redondo-Cabrera, et al. Shrec’12 track: Generic 3d

116

shape retrieval. In Proceedings of the 5th Eurographics conference on 3D Object

Retrieval, pages 119–126. Eurographics Association, 2012.

[Li et al., 2012b] Congcong Li, D. Parikh, and Tsuhan Chen. Automatic discovery

of groups of objects for scene understanding. In Proc. IEEE Conf. on CVPR,

pages 2735–2742, 2012.

[Lipman et al., 2010] Yaron Lipman, Xiaobai Chen, Ingrid Daubechies, and

Thomas Funkhouser. Symmetry factored embedding and distance. In ACM

Transactions on Graphics (TOG), volume 29, page 103. ACM, 2010.

[Litman et al., 2014] Roee Litman, Alex Bronstein, Michael Bronstein, and Um-

berto Castellani. Supervised learning of bag-of-features shape descriptors

using sparse coding. Computer Graphics Forum, 33(5):127–136, 2014.

[Liu et al., 2004] H. Liu, X. Xie, X. Tang, Z.W. Li, and W.Y. Ma. Effective browsing of

web image search results. In Proceedings of the 6th ACM SIGMM international

workshop on Multimedia information retrieval, pages 84–90. ACM, 2004.

[Lowe, 1999] David G Lowe. Object recognition from local scale-invariant

features. In International Conference on Computer vision, 1999., volume 2,

pages 1150–1157. Ieee, 1999.

[Lun et al., 2015] Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. Ele-

ments of style: learning perceptual shape style similarity. ACM Transactions

on Graphics (TOG), 34(4):84, 2015.

[Lyzinski et al., 2015] Vince Lyzinski, Donniell Fishkind, Marcelo Fiori, Joshua

Vogelstein, Carey Priebe, and Guillermo Sapiro. Graph matching: relax at your

own risk. IEEE TPAMI, 2015.

[Marcus et al., 2011] Adam Marcus, Eugene Wu, David Karger, Samuel Madden,

and Robert Miller. Human-powered sorts and joins. Proceedings of the VLDB

Endowment, 5(1):13–24, 2011.

[Markkula and Sormunen, 2000] Marjo Markkula and Eero Sormunen. End-user

searching challenges indexing practices in the digital newspaper photo archive.

Information retrieval, 1(4):259–285, 2000.

117

[Meyer et al., 2002] Mark Meyer, Mathieu Desbrun, Peter Schröder, Alan H Barr,

et al. Discrete differential-geometry operators for triangulated 2-manifolds.

Visualization and mathematics, 3(2):52–58, 2002.

[Mitra et al., 2013] Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or,

and Martin Bokeloh. Structure-aware shape processing. In Proc. Eurographics

State-of-the-art Reports, 2013.

[Neuhaus and Bunke, 2007] Michel Neuhaus and Horst Bunke. Bridging the Gap

Between Graph Edit Distance and Kernel Machines. World Scientific, River

Edge, NJ, USA, 2007.

[Novotni and Klein, 2003] Marcin Novotni and Reinhard Klein. 3d zernike

descriptors for content based shape retrieval. In Proceedings of the eighth

ACM symposium on Solid modeling and applications, pages 216–225. ACM,

2003.

[O’Donovan et al., 2014] Peter O’Donovan, Jānis Lı̄beks, Aseem Agarwala, and

Aaron Hertzmann. Exploratory font selection using crowdsourced attributes.

ACM Transactions on Graphics (TOG), 33(4):92, 2014.

[Oliva and Torralba, 2001] A. Oliva and A. Torralba. Modeling the shape of the

scene: A holistic representation of the spatial envelope. International Journal

of Computer Vision, 42(3):145–175, 2001.

[Osada et al., 2002] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and

David Dobkin. Shape distributions. ACM Trans. on Graph, 21(4):807–832,

2002.

[Ovsjanikov et al., 2010] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas.

One point isometric matching with the heat kernel. Computer Graphics Forum

(SGP), 29(5):1555–1564, 2010.

[Ovsjanikov et al., 2011] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and

Niloy J. Mitra. Exploration of continuous variability in collections of 3D shapes.

ACM Trans. on Graph (SIGGRAPH), 30(4):33:1–10, 2011.

118

[Ovsjanikov et al., 2012] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon,

Adrian Butscher, and Leonidas Guibas. Functional maps: a flexible repre-

sentation of maps between shapes. ACM Transactions on Graphics (TOG),

31(4):30, 2012.

[Ovsjanikov et al., 2013] Maks Ovsjanikov, Quentin Mérigot, Viorica Pătrăucean,

and Leonidas Guibas. Shape matching via quotient spaces. In Computer

Graphics Forum, volume 32, pages 1–11. Wiley Online Library, 2013.

[Pečenovió et al., 2000] Zoran Pečenovió, Minh N Do, Martin Vetterli, and Pearl

Pu. Integrated browsing and searching of large image collections. In

International Conference on Advances in Visual Information Systems, pages

279–289. Springer, 2000.

[Qi et al., 2016] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas Guibas. Volumetric and multi-view cnns

for object classification on 3d data. In Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 2016.

[Rodden et al., 1999] Kerry Rodden, Wojciech Basalaj, David Sinclair, and Ken-

neth Wood. Evaluating a visualisation of image similarity as a tool for image

browsing. In Information Visualization, 1999.(Info Vis’ 99) Proceedings. 1999

IEEE Symposium on, pages 36–43. IEEE, 1999.

[Rodden et al., 2001] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. Does

organisation by similarity assist image browsing? In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 190–197. ACM, 2001.

[Roweis and Saul, 2000] S.T. Roweis and L.K. Saul. Nonlinear dimensionality

reduction by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[Rui et al., 1998] Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra. Relevance

feedback: A power tool for interactive content-based image retrieval. Circuits

and Systems for Video Technology, IEEE Transactions on, 8(5):644–655, 1998.

[Rustamov, 2007] Raif M. Rustamov. Laplace-Beltrami eigenfunctions for de-

formation invariant shape representation. In Symp. on Geom. Proc., pages

225–233, 2007.

119

[Ruthven and Lalmas, 2003] I. Ruthven and M. Lalmas. A survey on the use

of relevance feedback for information access systems. The Knowledge

Engineering Review, 18(02):95–145, 2003.

[Sahillioǧlu and Yemez, 2011] Y Sahillioǧlu and Yücel Yemez. Coarse-to-fine

combinatorial matching for dense isometric shape correspondence. In

Computer Graphics Forum, volume 30, pages 1461–1470. Wiley Online Library,

2011.

[Sakamoto et al., 2004] Yasuhiko Sakamoto, Shigeru Kuriyama, and Toyohisa

Kaneko. Motion map: image-based retrieval and segmentation of motion

data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium

on Computer animation, SCA ’04, pages 259–266, Aire-la-Ville, Switzerland,

Switzerland, 2004. Eurographics Association.

[Saleh et al., 2015] Babak Saleh, Mira Dontcheva, Aaron Hertzmann, and

Zhicheng Liu. Learning style similarity for searching infographics. In Graphics

Interface Conference, pages 59–64. Canadian Information Processing Society,

2015.

[Sammon, 1969] John W Sammon. A nonlinear mapping for data structure

analysis. IEEE Transactions on computers, 1969.

[Schultz and Joachims, 2004] Matthew Schultz and Thorsten Joachims. Learn-

ing a distance metric from relative comparisons. Advances in neural informa-

tion processing systems (NIPS), page 41, 2004.

[Sebastian et al., 2004] T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition

of shapes by editing their shock graphs. IEEE Trans. Pat. Ana. & Mach. Int.,

26(5):550–571, 2004.

[Shamir, 2008] A. Shamir. A survey on mesh segmentation techniques. Computer

Graphics Forum, 27(6):1539–1556, 2008.

[Shapira et al., 2008] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consis-

tent mesh partitioning and skeletonisation using the shape diameter function.

The Visual Computer, 24(4):249–259, 2008.

120

[Shapira et al., 2009] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Image

appearance exploration by model-based navigation. In Computer Graphics

Forum, volume 28, pages 629–638. Wiley Online Library, 2009.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. IEEE Transactions on pattern analysis and machine intelligence,

22(8):888–905, 2000.

[Shilane et al., 2004] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas

Funkhouser. The princeton shape benchmark. In Shape Modeling Applications,

2004. Proceedings, pages 167–178. IEEE, 2004.

[Sidi et al., 2011] Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and

Daniel Cohen-Or. Unsupervised co-segmentation of a set of shapes via

descriptor-space spectral clustering. ACM Trans. on Graph (SIGGRAPH Asia),

30(6):126:1–10, 2011.

[Singh et al., 2007] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson.

Topological methods for the analysis of high dimensional data sets and 3d

object recognition. In SPBG, pages 91–100, 2007.

[Sivic and Zisserman, 2003] Josef Sivic and Andrew Zisserman. Video google:

A text retrieval approach to object matching in videos. In International

Conference on Computer Vision, 2003., pages 1470–1477. IEEE, 2003.

[Strong and Gong, 2008] Grant Strong and Minglun Gong. Browsing a large

collection of community photos based on similarity on gpu. In International

Symposium on Visual Computing, pages 390–399. Springer, 2008.

[Strong et al., 2010] Grant Strong, Orland Hoeber, and Minglun Gong. Visual

image browsing and exploration (vibe): User evaluations of image search

tasks. In International Conference on Active Media Technology, pages 424–435.

Springer, 2010.

[Suditu and Fleuret, 2011] Nicolae Suditu and Francois Fleuret. Heat: Iterative

relevance feedback with one million images. In International Conference on

Computer Vision, October 2011.

121

[Sun et al., 2009] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise

and provably informative multi-scale signature based on heat diffusion. In

Computer Graphics Forum, volume 28, pages 1383–1392. Wiley Online Library,

2009.

[Sundar et al., 2003] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton

based shape matching and retrieval. In Shape Modeling International, pages

130–139, 2003.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[Talton et al., 2009] Jerry O Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan,

and Vladlen Koltun. Exploratory modeling with collaborative design spaces.

ACM Transactions on Graphics-TOG, 28(5):167, 2009.

[Tamuz et al., 2011] Omer Tamuz, Ce Liu, Ohad Shamir, Adam Kalai, and Serge J.

Belongie. Adaptively learning the crowd kernel. In International Conference

on Machine Learning (ICML-11), pages 673–680. ACM, 2011.

[Tangelder and Veltkamp, 2004] Johan WH Tangelder and Remco C Veltkamp.

A survey of content based 3d shape retrieval methods. In Shape Modeling

Applications, 2004. Proceedings, pages 145–156. IEEE, 2004.

[Tangelder and Veltkamp, 2008] Johan WH Tangelder and Remco C Veltkamp. A

survey of content based 3d shape retrieval methods. Multimedia tools and

applications, 39(3):441–471, 2008.

[Umetani et al., 2012] Nobuyuki Umetani, Takeo Igarashi, and Niloy J Mitra.

Guided exploration of physically valid shapes for furniture design. ACM

Transactions on Graphics, 31(4), 2012.

[Van Kaick et al., 2011] Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and

Daniel Cohen-Or. A survey on shape correspondence. In Computer Graphics

Forum, volume 30, pages 1681–1707. Wiley Online Library, 2011.

122

[van Kaick et al., 2014] Oliver van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi,

and Daniel Cohen-Or. Shape segmentation by approximate convexity analysis.

ACM Trans. Graph., 34(1):4, 2014.

[Vanamali et al., 2010] TP Vanamali, A Godil, H Dutagaci, T Furuya, Z Lian, and

R Ohbuchi. Shrec’10 track: Generic 3d warehouse. In Proceedings of the 3rd

Eurographics conference on 3D Object Retrieval, pages 93–100. Eurographics

Association, 2010.

[Vieira et al., 2009] Thales Vieira, Alex Bordignon, Adelailson Peixoto, Geovan

Tavares, Hélio Lopes, Luiz Velho, and Thomas Lewiner. Learning good views

through intelligent galleries. In Computer Graphics Forum, volume 28, pages

717–726. Wiley Online Library, 2009.

[Wang et al., 2009] Chong Wang, David Blei, and Fei-Fei Li. Simultaneous image

classification and annotation. In Computer Vision and Pattern Recognition,

2009., pages 1903–1910. IEEE, 2009.

[Wang et al., 2012] Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang,

Daniel Cohen-Or, and Baoquan Chen. Active co-analysis of a set of shapes.

ACM Transactions on Graphics (TOG), 31(6):165, 2012.

[Wang et al., 2014] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,

Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learning fine-grained

image similarity with deep ranking. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1386–1393, 2014.

[Weinberger et al., 2005] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul.

Distance metric learning for large margin nearest neighbor classification. In

Advances in neural information processing systems, pages 1473–1480, 2005.

[Wilber et al., 2014] Michael J Wilber, Iljung S Kwak, and Serge J Belongie. Cost-

effective hits for relative similarity comparisons. In Conference on Human

Computation and Crowdsourcing, 2014.

[Xing et al., 2003] Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart Russell.

Distance metric learning with application to clustering with side-information.

Advances in neural information processing systems, 15:505–512, 2003.

123

[Xu et al., 2010] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan

Xiong, and Zhiquan Cheng. Style-content separation by anisotropic part

scales. ACM Trans. on Graph (SIGGRAPH Asia), 29(6), 2010.

[Yang et al., 2011] Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J

Mitra. Shape space exploration of constrained meshes. ACM Trans. Graph,

30(124):1–124, 2011.

[Yee et al., 2003] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst.

Faceted metadata for image search and browsing. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 401–408. ACM, 2003.

[Yi et al., 2012] Jinfeng Yi, Rong Jin, Shaili Jain, Tianbao Yang, and Anil K Jain.

Semi-crowdsourced clustering: Generalizing crowd labeling by robust distance

metric learning. In Advances in Neural Information Processing Systems, pages

1772–1780, 2012.

[Zelnik-Manor and Perona, 2004] Lihi Zelnik-Manor and Pietro Perona. Self-

tuning spectral clustering. In NIPS, volume 17, pages 1601–1608, 2004.

[Zha et al., 2008] Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong Wang, Guo-

Jun Qi, and Zengfu Wang. Joint multi-label multi-instance learning for image

classification. In Computer Vision and Pattern Recognition, 2008., pages 1–8.

IEEE, 2008.

[Zhang et al., 2001] Lei Zhang, Fuzong Lin, and Bo Zhang. Support vector

machine learning for image retrieval. In Proc. IEEE Int. Conf. on Image

Processing, pages 721–724, 2001.

[Zheng et al., 2014] Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and

Niloy J. Mitra. Recurring part arrangements in shape collections. Computer

Graphics Forum (Eurographics), 33, 2014.

[Zhou and Huang, 2003] X.S. Zhou and T.S. Huang. Relevance feedback in image

retrieval: A comprehensive review. Multimedia systems, 8(6):536–544, 2003.

124

7

הצורות השונות. באופן אינטואיטיבי, ההתאמה הסימטרית בין חלקי התאמה סימטרית

מאפשרת לכל חלק להתאים לכמות כלשהי של חלקים סימטריים בצורה השניה. בפועל,

קבוצות בגדלים שונים של חלקים בצורה אחת מותאמות לקבוצות של חלקים בקבוצה

וצות אלו השניה, כך שכל חלק בקבוצה הראשונה מותאם לכל חלק בקבוצה השניה. קב

 מתארות את אוסף הסימטריות של החלקים בכל צורה.

(היא בעיית intrinsic symmetriesהתאמה של חלקים הכוללים סימטריות פנימיות)

התאמה קשה במיוחד, מאחר ובהכרח יש כמה פתרונות סבירים במידה שווה. פתרון

אופטימיזציה מסוג זה הוא יקר ומועד לשגיאות, ולכן במקרים רבים מתקבל פתרון פחות

חד ערכית, -מרפה את האילוץ למציאת התאמה חדמדויק מן הרצוי. ההתאמה הסימטרית

יפוש כך שקיים רק פתרון יציב אחד לבעיה, שניתן למצוא ובפועל מכווצת את מרחב הח

 באופן מאוד מהיר ויעיל.

יש לשים לב שעבור התאמה של רבים לרבים)כפי שנדרשת כאן(, פתרון המתאים כל חלק

בצורה אחת לכל חלק בצורה השניה הוא תקין ומותר על פי האילוצים, אם כי לא רצוי. זאת

או של אחד לרבים, שלא מאפשרות פתרונות מנוונים חד ערכיות-בניגוד להתאמות חד

(, לא ניתן לקבוע בצורה מהימנה sparseמסוג זה. אם פתרון האופטימיזציה אינו דליל)

לכן אנו מציעים אלגוריתם המבוסס על כמה מן ההתאמות בין חלקים יש לכלול בפתרון.

מופיעים רק עבור התאמות שמבטיח פתרון דליל שבו ערכים גבוהים התאמה ספקטרלית

 ששייכות לפתרון הכולל.

חד ערכית כאשר נתונה התאמה סימטרית אינה טריוויאלית וידרשו -מציאת התאמה חד

שימושים להתאמה הסימטרית נםלשם כך צעדים נוספים. אף על פי כן, אנו מראים כי יש

תאמה בפרט, אנחנו מראים שניתן להשתמש בה חד ערכית.-גם ללא מציאת התאמה חד

חד ערכית מטבעה(. כמו -הסימטרית על מנת לשפר התאמה צפופה בין הצורות)שהיא חד

כן, ניתן להשתמש בהתאמה סימטרית על מנת לזהות סימטריה פנימית בצורה ברמת

המקטעים. ברוב המקרים, ניתן לתרגם באופן מיידי התאמה סימטרית בין מקטעים

, מאחר ואנו משתמשים במספר גבוה של להתאמה סימטרית בין נקודות עניין בצורה

מקטעים שלרוב לא משויכת אליהן יותר מנקודה אחת. בעוד ההתאמה הסימטרית שאנו

חד ערכיות, הפתרון שלנו יעיל יותר ומהיר יותר, -מוצאים היא פחות פרטנית מהתאמות חד

 שיטות אשר מוצאותהתאמות שנמצאו על ידי מיותר ת ומדויקוההתאמות ברמת המקטע

 חד ערכית.-התאמה חד

 .הגשת המסמךבעת תוצאות פרק זה טרם פורסמו

6

, ומוצאים התאמה בין החלקים של [Van Kaick et al. 2014]קמורים -לחלקים כמעט

הצורות השונות. על פי ההתאמה אנחנו מעריכים את פעולות העריכה הנדרשות על מנת

להעתיק כל חלק אל החלק התואם לו בצורה השניה. לכן, שיטה זו מסוגלת לזהות צורות

או אופן שימוש. מרחק עריכת הצורה מהווה מידת דמיון אינטואיטיבית בעלות אותו סגנון

לכן הוא שימושי כדי לזהות צורות ויחסית קרובה לתפיסה אנושית של דמיון בין צורות.

דומות בתוך אותה הקטגוריה, בנוסף ליכולתו להבדיל בין צורות השייכות לקטגוריות

 שונות.

ין חלקי הצורות. התאמה בין גרפים או בין חלק מרכזי בשיטה הוא חישוב ההתאמה ב

נקודות עניין הוא נושא שנחקר רבות בשנים האחרונות, אך לרוב לצורך מציאת התאמה

 .Leordeanu and Hebert 2005, Berg et al]חד ערכית או התאמה של אחד לרבים -חד

2005, Kezurer et al. 2015, Cour et al., 2006; Leordeanu et al., 2009].

, או שהן בכלל אינן תומכות מבנה התאמה מורכב יותרעבור שיטות אלו פחות אפקטיביות

כיוונית: -לרבים דו-עבור מרחק עריכת הצורה, נדרשת התאמה אחד. בסוגי התאמה אחרים

-כל חלק בכל אחת מהצורות יכול להתאים למספר חלקים בצורה השניה, אבל יחסי רבים

ר והאילוצים גמישים יחסית, ישנם בדרך כלל מספר פתרונות לרבים אינם מותרים. מאח

מתחרים וסותרים שמתאימים בסבירות גבוהה לאילוצים. במקרה כזה חלק מההתאמות בין

החלקים עשויות להילקח מפתרון אחד בעוד חלק אחר מן ההתאמות נלקח מפתרון אחר

התאמה ם אלגוריתם וסותר, וכך מתקבלת התאמה שאינה עקבית. כפתרון, אנחנו מציעי

, אשר מרחיב את הפתרון הפופולרי (adaptive spectral matchingספקטרלית אדפטיבי)

מתקן את . אלגוריתם זה [Leordeanu and Hebert, 2005]התאמה ספקטרלית של

פונקציית האופטימיזציה באופן איטרטיבי בהתאם להתאמות שנבחרו בשלבים מוקדמים

 בי נותן עדיפות להתאמות ששייכות לאותו פתרון קוהרנטי.יותר. האלגוריתם האדפטי

 תוצאות פרק זה פורסמו במאמר הבא:

Shed: shape edit distance for fine-grained shape similarity.

Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung, and Daniel Cohen-Or.

ACM Transactions on Graphics (SIGGRAPH Asia), 2015.

 התאמה סימטרית באמצעות גרף חלקי הצורה

נחקור רעיון דומה של חלוקת הצורה למקטעים ומציאת התאמה בין המקטעים. בפרק זה

הפעם נשתמש בטכניקה זו בכדי למצוא התאמות צפופות בין צורות ובכדי לזהות סימטריה

(היא point-to-point correspondenceאו denseצפופה)פנימית של צורות. התאמה

התאמה שבה עבור כל נקודה בצורה מוגדרת נקודת יעד בצורה השניה. לאחר חלוקת

הצורה למקטעים באופן פרמטרי)כלומר, החלוקה היא לא בהכרח לכדי חלקים סמנטיים(,

ומת מתאר מקטע ובין (, שבו כל צshape graphאנו יוצרים גרף המתאר את חלקי הצורה)

כל שני מקטעים סמוכים קיימת קשת. גרף חלקי הצורה מספק מידע על מבנה הצורה,

שניתן להשתמש בו על מנת לייצב את ההתאמה ולשלול התאמות שאינן תואמות לשאר

ההתאמות בין חלקי הצורה. בפרט, אנחנו משתמשים בגרף חלקי הצורה בכדי למצוא

5

, והתהליך ההטמעה מייצרים שאילתות נוספות בהתבסס על מיקום האובייקטים במרחב

הכוללות חוזר על עצמו עד לניצול תקציב השאילתות. אבחנה חשובה היא ששאילתות

אובייקטים הקרובים זה לזה הן בדרך כלל מדויקות יותר)למשל, קל לזהות תמונות דומות

מאוד, אך קשה להעריך איזו מבין שתי תמונות קרובה יותר לתמונה שלישית כאשר כל

שחזור המרחקים בין כל האובייקטים בהינתן השלוש שונות מאוד זו מזו(. כמו כן,

וא יותר אמין משחזור המסתמך על מרחקים ארוכים. לכן, אנו המרחקים הקצרים ביותר ה

דואגים בכל שאילתה לדגום תמונות שאמורות להיות קרובות זו לזו ככל הידוע לנו עד כה.

תמונות מתוך סביבתה הקרובה nלשם כך אנחנו בוחרים תמונה כלשהי במאגר ואז בוחרים

אלו יהיו רחוקות יחסית זו מזו, במרחב ההטמעה. בשלבים ראשונים של התהליך תמונות

אך ככל שנוספות שאילתות מיקום האובייקטים במרחב ההטמעה מדויק יותר והמרחקים

 בין התמונות הנבחרות הולכים ומתקצרים.

ניתן לשלב בין מידת הדמיון שמחושבת באמצעות מיקור ההמונים ומדידות דמיון

לבחור תמונות מייצגות מתוך מאגר לדוגמה, ניתן צורה.\המבוססות על מאפייני התמונה

גדול, לחשב עבורן את הדמיון הסמנטי ולפעפע אותו אל שאר התמונות במאגר באמצעות

 מטריקות דמיון אוטומטיות.

 תוצאות פרק זה פורסמו במאמר הבא:

Toward semantic image similarity from crowdsourced clustering.

Yanir Kleiman, George Goldberg, Yael Amsterdamer, and Daniel Cohen-Or.

The Visual Computer, 2016.

 דמיון בין צורות באמצעות מרחק עריכת הצורה

התרכזו עד כה קיימות בצורות תלת מימדיות. מידות מרחק בשני הפרקים הבאים נתמקד

, בקטגוריות שונות, או זיהוי צורות השייכות לאותה הקטגוריהבעיקר באבחנה בין צורות

. השיטות העדכניות ביותר אך לא ייחסו חשיבות לדמיון הצורות בתוך אותה הקטגוריה

מבוססות על מראה הצורה הכולל ולכן משקפות רק דמיון חסר הקשר סמנטי. שיטות אלו

רות שיש ביניהן דמיון חלקי אינן משקפות דמיון בין צורות המונחות בפוזה אחרת, צו

, או צורות שנערכו בהן שינויים ששינו את מהצורה הוסר(כאשר חלק גדול)למשל

הן חסרות את ההקשר הסמנטי הפרופורציות בצורה)למשל מתיחה או כיווץ של חלקים(.

 הנדרש על מנת לזהות צורות בעלות סגנון דומה או דרך שימוש דומה.

, מידת דמיון בין צורות תלת (Shape Edit Distanceעריכת הצורה)מרחק אנו מציגים את

מימדיות אשר מבחינה בדמיון בפרטים עדינים יותר של הצורה, בנוסף לדמיון מבני כולל

בין הצורות. בפרט, מרחק עריכת הצורה מזהה דמיון בין צורות שעברו עריכה כגון הסרה,

הוא מספק מידת דמיון סמנטית יותר מאשר סיבוב, מתיחה או כיווץ של חלקים. בשם כך

שיטות מקבילות, שמשקפת במידה רבה יותר את הדמיון בין צורות כפי שהוא נתפס על

מטרתנו היא למדוד את כמות המאמץ הנדרשת בכדי להפוך צורה אחת לצורה ידי בני אדם.

ים כל צורה השניה, על ידי ביצוע פעולות עריכה על חלקי הצורה. לצורך כך, אנחנו מחלק

4

הדינמיות עבור כל מאגר של אובייקטים המיוצגים על להשתמש במפותשניתן כךבמאגר,

ידי תמונות ובכל מידת דמיון שנבחר. לדוגמה, ניתן לשוטט במאגר של תמונות פנים

מאפיינים ספציפיים של זיהוי תמונה, או במאגר מבוססת על שמידת דמיון באמצעות

בעבודה זו מימשנו מפות דינמיות תמונות רפואיות על בסיס ניתוח רפואי של הנתונים.

כמו כן יים ועבור מאגר של מיליון תמונות.אובייקטים תלת מימד 4,500אגר של כ עבור מ

מידת שביעות הרצון של המשתמשים בעת אתבין השאר ערכנו סקרים מקיפים הבוחנים

ות לעומת שיטות חיפוש סטנדרטיות. באמצעות מפות דינמישונות ביצוע משימות

 עזי של עבודה זו.של החלק הלו 2התוצאות המלאות מופיעות בפרק

 תוצאות פרק זה פורסמו במאמרים הבאים:

Dynamic maps for exploring and browsing shapes.

Yanir Kleiman, Noa Fish, Joel Lanir, and Daniel Cohen-Or.

Computer Graphics Forum (SGP), 2013.

DynamicMaps: Similarity-based browsing through a massive set of images.

Yanir Kleiman, Joel Lanir, Dov Danon, Yasmin Felberbaum, and Daniel Cohen-Or.

In Proceedings of the SIGCHI conference on Human factors in computing systems,

2015.

 יםדמיון בין תמונות באמצעות מיקור המונ

נובע שהוא סמנטי לחלוטין, כלומר בפרק זה אנו מציגים שיטה לחישוב דמיון בין תמונות

מהקשר התמונה, כמו גם ממידע חיצוני לתמונה ואפילו הרגש שהתמונה מעוררת. כמו

בפרק הקודם, גם כאן התמונה יכולה לייצג אובייקט כלשהו, כדוגמת צורות תלת מימדיות.

לא ניתן לזיהוי על ידי כלים אוטומטיים. תחת זאת, אנו לרוב הקשר סמנטי כאמור לעיל

מציעים לאסוף מידע מן הקהל על ידי שימוש בטכניקות של מיקור המונים. המטרה היא

להתכנס במהירות יחסית לעבר מידת דמיון מדויקת ככל שניתן תוך כדי מזעור העלות,

ישנם שני אתגרים ה. שנגזרת ממספר השאילתות הנדרש והסיבוכיות של כל שאילת

ראשית, כיצד ניתן להשוות בין תמונות בצורה יעילה מרכזיים בפיתוח שיטה מסוג זה:

ומועילה, כלומר איזה סוג שאילתות רצוי לשלוח לקהל. שנית, איך כדאי לבחור את

התמונות בכל שאילתה, וכיצד ניתן להשתמש בידע שהצטבר משאילתות קודמות על מנת

 ועילות יותר.לבנות שאילתות מ

אנו מספקים תשובות לשתי שאלות אלו, ומציגים שיטה שמבוססת על שאילתות חלוקה

קבוצות. kל תמונות nלחלק אוסף של מוטלת המשימה (. על הקהל clusteringלקבוצות)

תוצאות החלוקה משמשות לשיפור הדרגתי של מידת הדמיון על ידי הטמעה של

ממימד נמוך. הטמעה זו פותרת קונפליקטים בתוצאות (במרחבembeddingהאובייקטים)

לאחר מכן אנו השאילתות ומאחדת את המידע כך שנוצרת מידה עקבית וקוהרנטית.

3

התאמה סימטרית התאמה מסוג חדש אשר נקרא לה נקודה בצורה(. אנו מגדירים

(symmetry aware correspondence) בהתאמה זו כל מקטע יכול להתאים לקבוצת .

כמו כן אנו מציגים שיטה יעילה ויציבה למציאת מקטעים סימטריים בצורה השניה.

התאמות מסוג זה, שפותרות את אי היציבות האופיינית לחישוב התאמות בין צורות

התאמות סימטריות בין המקטעים יכולות לשמש לשיפור התאמות סימטריות. אנו מראים ש

 חד ערכית בין המקטעים.-צפופות בין צורות ללא צורך במציאת התאמה חד

כדי למצוא התאמות בין מקטעים, יש לפתור למעשה בעיית התאמה בין גרפים. התאמה ב

העבודות מתרכזות בהתאמות ן שלובראך , בין גרפים היא נושא רחב שנערך בו מחקר רב

עבור השיטות שתוארו לעיל, נדרש מבנה לרבים. -חד ערכיות או התאמות של אחד-חד

חישוב מרחק העריכה בין צורות, נדרשת התאמה שבה התאמה מורכב יותר. לדוגמה, עבור

-כל חלק)בשתי הצורות(עשוי להתאים לכמה חלקים בצורה השניה, אך יחסים מסוג רבים

לרבים אינם מותרים. לשם כך, עבודות אלו כוללות תרומות ראויות לציון לפתרון בעיית

 spectralפקטרלית)ההתאמה בין גרפים: אנו מציגים שני עדכונים של שיטת התאמה ס

correspondence .אלו אלגוריתמים (, שהיא שיטת נפוצה לחישוב התאמות בין גרפים

 של עבודה זו. הלועזישל החלק 5.3ו 4.3מפורטים בחלקים

 שיטוט מבוסס דמיון על ידי מפות דינמיות

מאגרי תמונות סקירת שיטה ל ,(Dynamic Mapsמפות דינמיות) בפרק זה אנו מציגים

הקלט לשיטה הינו מרחקים בין שמתבססת על הדמיון בין האובייקטים במאגר.

האובייקטים ותמונות מייצגות של האובייקטים במאגר, בין אם מדובר בתמונות, צורות

ניתן לייצג ע"י תמונה. התמונות המייצגות אשר ת, או כל אובייקט אחר ותלת מימדי

דו מימדית אינסופית על גבי רשת סדורה)כלומר ישנם רווחים שווים בין מסודרות במפה

-אין וזום-(ופעולות זוםpanכל התמונות(, הניתנת לשיטוט על ידי גרירה לכל כיוון)

 המפה היא רציפה ודינמית, וכל טלאי במפה נוצר רק ברגע שבו הוא נדרש. אאוט.

ממימד גבוה מאוד, והדמיון ביניהן לא יכול תמונות וצורות תלת מימדיות הן אובייקטים

להיות מיוצג כראוי במרחב דו מימדי רציף. לכן, כל מיפוי גלובלי של תמונות או צורות

אזורים שאינם רציפים או חלקים. במפות דינמיות, לעומת למפה דו מימדית חייב להכיל

בלית, ניתן לשמור זאת, מאחר וכל טלאי במפה מיוצר בפני עצמו ולא מבוסס על מפה גלו

על כך שכל טלאי יהיה רציף באופן מקומי ושהמפה תהיה עקבית. עבור המשתמש, שרואה

בכל רגע נתון טלאי רציף שמהווה חלק קטן מן המפה, התחושה היא שקיימת מפה גלובלית

שמתוכה נלקח הטלאי, וכך נוצרת חווית שיטוט רציפה וחלקה. יתרון נוסף של מפות

פשרות להתאים את התמונות המוצגות לכיוון השיטוט במפה, כך שרצון דינמיות היא הא

המשתמש מיוצג טוב יותר, בניגוד למפות גלובליות שבהן היחסים בין האזורים השונים

 במפה מוכתבים מראש.

למעשה, ניתן ליצור מפות דינמיות ביעילות רבה, ללא תלות במספר האובייקטים שבמאגר.

החלק המשמעותי ביותר בזמן יצירת המפה מוקדש לטעינת התמונות הנדרשות מהדיסק.

מאגרי תמונות עצומים המכילים מיליוני סקירת למכאן, שמפות דינמיות יכולות לשמש

כמו כן, אלגוריתם יצירת המפה מנותק לחלוטין מחישוב הדמיון בין האלמנטים תמונות.

2

 תקציר

 הקדמה

מאגרים של אובייקטים תלת מימדיים שהיו קטנים ומועטים הפכו להיות גדולים ונפוצים

תמונות עברו תהליך דומה אך בסדר גודל אחר; הם הפכו מגדולים יחסית. לעומתם, מאגרי

ונפוצים לעצומים וזמינים בכל כיס. זמינות המאגרים מגדילה את הביקוש לדרכים יעילות,

 ם של תמונות וצורות תלת מימדיות.אמינות ואינטואיטיביות לארגון וסקירת מאגרי

ים גדולים של תמונות או צורות בתוך אוספ דמיון סמנטיעבודת זו מתרכזת במחקר של

הדמיון סמנטי, כמו גם באפליקציות אפשריות תו שללת מימדיות. אנו מעוניינים במדידת

מגוון רחב בסיס ל התמונות דומות או צורות דומות מהוו זיהוישל מידת דמיון מסוג זה.

ת וצורות קירת מאגרי תמונוס(, retrievalשל שימושים, כגון מציאת תמונות וצורות)

(exploration .וחלוקה שלהן לקטגוריות ,)וצורות, אנו קירת מאגרי תמונות ס לצורך

, שיטה שמתבססת על הדמיון בין (Dynamic Mapsמפות דינמיות)מציעים

במילות מפתח תלות במאגרים גדולים ללא אינטואיטיבי צורות ומאפשרת שיטוט\תמונות

צורות \אפליקציות נוספות, חשוב שהדמיון בין התמונותסינון. עבור שיטה זו, כמו או

כגון דרך השימוש באובייקט, המקור שלו, ישקף מידע סמנטי ששייך לתמונה או לצורה,

מיקומו ועוד. עם זאת, שיטות עדכניות לחישוב דמיון מתבססות לרוב על מאפיינים

 מקומיים ולא משקפות מידע סמנטי כראוי.

למדידת דמיון שמשלבות מידע סמנטי, אנו מציגים שתי שיטות מונעים מהצורך בשיטות

(, ומציעה crowdsourcingלמדידת דמיון סמנטי. הראשונה מתבססת על מיקור המונים)

שאילתות את מספר ה, וכך להקטין שאילתהדרך תשאול שבה ניתן להפיק מידע רב מכל

ע סמנטי אשר קיים השימוש במיקור המונים מאפשר לגלות מיד שנדרש לשלוח לקהל.

מחוץ לתמונה או הצורה עצמה, למשל זיהוי של תמונות אשר צוירו בידי אותו אמן או

חפצים ששייכים לסביבה דומה. השיטה השניה מודדת דמיון סמנטי בין צורות תלת

מימדיות על ידי השוואת החלקים מהן מורכבות הצורות. על ידי שימוש בהתאמה בין

 (נדרשותtransformationsרה, ניתן להעריך אילו העתקות)החלקים השונים בכל צו

 מרחק העריכה של הצורותעל מנת להפוך צורה אחת לשניה. אנו מגדירים את

(Shape Edit Distance) כסכום העלויות של ההעתקות הנ"ל. מרחק זה רגיש לדמיון

יש דמיון מבני(, בהן שימוש דומה נעשהבדרך השימוש של צורות)שכן לרוב בין צורות ש

 עריכות שונות של אותה צורת מקור.של תוצאות ולדמיון בין צורות שהן

יחס בין חלוקה של צורות ל מהווה דוגמהשל מרחק העריכה בין צורות דרך החישוב

של למקטעים, התאמה בין צורות ודמיון בין צורות. שלושת הבעיות הללו הן נדבכי יסוד

ל אחת מהן זוכה למחקר רב ומעמיק בפני עצמה. (, וכshape analysisתחום חקר הצורות)

עם זאת, קיים קשר חזק בין הבעיות, ופלט של אחת מהן יכול לשמש כקלט לאחרת. למשל,

דמיון בין חלקי הצורה יכול לשמש לצורך חלוקה של הצורה למקטעים, החלוקה למקטעים

ש לחישוב לה לשמיכולה לשמש לצורך חישוב התאמה בין הצורות, והתאמה בין צורות יכו

דמיון סמנטי בין הצורות. אנו ממשיכים לחקור את הקשר בין התאמה ובין חלוקה של

צורות, ומראים כיצד חלוקה למקטעים יכולה להיות לעזר בחישוב התאמה צפופה בין

, שבהן מסופקת התאמה מדויקת של כל point-to-point correspondenceצורות)

1

 תמצית

בעבודה זאת, אנו חוקרים את המושג "דמיון סמנטי" בין צורות תלת מימדיות ובין תמונות.

נתייחס לתמונות אך כל האמור תקף גם לגבי אובייקטים תלת מימדיים. פסקאות הבאות ב

כגון הדמיית היחסים בין הוא אבן בניין באפליקציות רבות, תמונות דמיון בין מדידת ה

שלהן לקטגוריות, מציאת תמונות מסוימות במאגר ושיטוט במאגר התמונות, חלוקה

תמונות. כאפליקציה נוספת, אנו מציגים שיטה חדשנית לשיטוט במאגרי תמונות אשר

מפה חסרת קצוות, כך ססת על הדמיון בין התמונות. אנו מניחים תמונות על גבימבו

פה לכל כיוון כפי שמשוטטים שתמונות קרובות במפה הינן דומות זו לזו. ניתן לשוטט במ

על גבי מפה גיאוגרפית. כך נוצרת חווית שיטוט אינטואיטיבית וחלקה. השיטה היא יעילה

ללא תלות בגודל המאגר, כך שהיא שימושית גם עבור מאגרים גדולים במיוחד של מיליוני

 תמונות.

ויה במידה רבה עבור אפליקציה זו ועבור שימושים אחרים שצוינו לעיל, איכות הפתרון תל

על הדמיון המחושב בין התמונות לשקף את באיכות המדידה של הדמיון בין התמונות.

הדמיון הנתפס ביניהן באופן אינטואיטיבי על ידי בני אדם, כלומר דמיון סמנטי. על כן

קיים צורך במחקר מעמיק על מנת לשפר שיטות קיימות לחישוב דמיון, שבמקרים רבים

טי. לצורך כך, אנו מציגים כיצד ניתן לגלות דמיון סמנטי מורכב שלא נעדרות הקשר סמנ

(. crowdsourcingניתן לחישוב באופן אוטומטי על ידי שימוש בטכניקות מיקור המונים)

שיטות מסוג זה יכולות לספק הקשר סמנטי חיצוני לתמונה ולשמש כהשלמה לשיטות

 חישוב דמיון אוטומטיות.

שווה לגבי תמונות ולגבי צורות תלת מימדיות. עתה נעבור האמור לעיל תקף במידה

(, segmentationלהתמקד בצורות תלת מימדיות בלבד. חלוקה של צורה למקטעים)

התאמה בין צורות, ודמיון בין צורות הינן בעיות מפתח בתחום, וכל אחת מהן זוכה למחקר

ללו, ופלט של אחת מהן מעמיק בפני עצמה. יחד עם זאת, קיים קשר חזק בין הבעיות ה

אחרת. אנו מציגים שיטה אשר מודדת דמיון בין צורות על ידי חלוקתן ליכול לשמש כקלט

למקטעים ומציאת התאמה בין המקטעים. מידת דמיון זו משקפת יחסים סמנטיים בין

 או צורות שדרך תפעולן דומה.הצורות כגון צורות השייכות לאותו הסגנון

אנו ממשיכים לחקור את הקשר בין התאמה בין צורות ובין חלוקתן למקטעים, ומראים

כיצד חלוקה למקטעים יכולה לשמש לשיפור התאמות צפופות בין צורות)שבהן מסופקת

 התאמה מדויקת של כל נקודה בצורה(. כאשר מחשבים התאמה בין צורות סימטריות,

 , אשר גורמים לחוסר יציבות שלישנם כמה פתרונות סותרים לבעיית ההתאמה

 סימטרית מסוג חדש אשר נקרא לה התאמה התאמהמגדירים הסופי. אנו הפתרון

(symmetry aware correspondence בהתאמה זו כל מקטע יכול להתאים לקבוצת .)

צורה השניה. הגדרה זו מאפשרת לנו למצוא את התאמות בין צורות מקטעים סימטריים ב

ת רבה. ההתאמה הסימטרית שאנו מוצאים הינה פחות פרטנית אך יותר סימטריות ביעילו

חד ערכית. אנו מראים דרך לשימוש בהתאמה -מדויקת משיטות אשר מוצאות התאמה חד

חד ערכיות צפופות בין צורות, ללא -סימטרית בין מקטעים על מנת לשפר התאמות חד

חד ערכית -חישוב התאמה חדחד ערכית בין המקטעים. כמו כן, -צורך במציאת התאמה חד

מנותק ממציאת ליך המשך בבין מקטעים על פי התאמה סימטרית יכול להתבצע כתה

 ההתאמה עצמה, ולכן צפוי שתהליך זה יהיה פשוט יותר.

 אביב-אוניברסיטת תל

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 ביה"ס למדעי המחשב ע"ש בלבטניק

 דמיון והתאמה בין אובייקטים תלת מימדיים

 ובין תמונות

 חיבור זה מוגש כחלק מהדרישות לקבלת תואר "דוקטור לפילוסופיה"

 מאת

 יניר קלימן

 למדעי המחשבעבודה זו בוצעה בביה"ס

 אור-תחת הנחייתו של פרופ' דניאל כהן

 אביב-הוגש לסנאט של אוניברסיטת תל

 2016אוגוסט

 אביב-אוניברסיטת תל

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 ביה"ס למדעי המחשב ע"ש בלבטניק

 דמיון והתאמה בין אובייקטים תלת מימדיים

 ובין תמונות

 חיבור זה מוגש כחלק מהדרישות לקבלת תואר "דוקטור לפילוסופיה"

 מאת

 יניר קלימן

 2016אוגוסט

	Introduction
	What is Semantic Similarity?
	Applications of Semantic Similarity
	Image and shape retrieval
	Relevance feedback
	Embedding
	Clustering
	Categorization trees

	Similarity Based Browsing with Dynamic Maps
	Semantic Similarity from Crowdsourced Clustering
	Semantic Shape Similarity Using Shape Edit Distance
	Symmetry Aware Correspondence Using Shape Graphs

	Similarity Based Browsing with Dynamic Maps
	Image Browsing
	Dynamic Maps
	Related Work
	Image browsing
	Shape browsing
	Relevance feedback
	Planar Mapping

	Map Generation
	Interface Enhancements
	Zoom levels
	Focusing on an image

	Datasets and Implementation
	Shapes
	Images

	Evaluation
	Shapes
	Images
	Results
	Discussion

	Conclusion

	Semantic Similarity from Crowdsourced Clustering
	Related Work
	Algorithm
	Experiments
	Crowd Experiments with Ground Truth
	Crowd Experiments with Real-world datasets
	Synthetic Experiments

	Conclusion

	SHED: Shape Edit Distance
	Related Work
	Shape Edit Distance
	Part Matching
	Distance Formulation
	Evaluation
	Conclusion

	Symmetry Aware Correspondence
	Related Work
	Segmentation and shape graphs

	Consistent Segmentation
	Symmetry Aware Matching
	Formulation
	Sparse spectral matching

	Evaluation
	Qualitative evaluation
	Comparison to BIM
	Point-to-point maps
	Symmetry detection
	Matching of feature points

	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions

	References

