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Abstract

Computing similarities or distances between 3D shapes is a crucial
building block for numerous tasks, including shape retrieval, ex-
ploration and classification. Current state-of-the-art distance mea-
sures mostly consider the overall appearance of the shapes and are
less sensitive to fine changes in shape structure or geometry. We
present shape edit distance (SHED) that measures the amount of
effort needed to transform one shape into the other, in terms of re-
arranging the parts of one shape to match the parts of the other
shape, as well as possibly adding and removing parts. The shape
edit distance takes into account both the similarity of the overall
shape structure and the similarity of individual parts of the shapes.
We show that SHED is favorable to state-of-the-art distance mea-
sures in a variety of applications and datasets, and is especially suc-
cessful in scenarios where detecting fine details of the shapes is
important, such as shape retrieval and exploration.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems.

Keywords: Shape similarity, intra-class retrieval, edit distance.

1 Introduction

With the growth of on-line shape repositories in recent years, there
is an increasing need to organize and efficiently explore large col-
lections of 3D shapes [Ovsjanikov et al. 2011; Huang et al. 2013b;
Kim et al. 2013; Kleiman et al. 2013; Averkiou et al. 2014]. The
question underlying this task, and a fundamental question in shape
analysis, is how to compare shapes and measure their similarity. In
fact, the choice of an appropriate similarity measure is in the core
of many algorithms that handle 3D shapes. In this regard, previ-
ous work has focused on the development of similarity measures
for classification of shapes into broad sets of categories [Tangelder
and Veltkamp 2008], but little attention has been given to estimat-
ing the similarity between shapes that belong to the same class.
That is, detection of inter-class differences has been emphasized
over quantification of intra-class differences. With the large repos-
itories available today, organization and exploration of families of
shapes has become as important as categorizing shapes into dif-
ferent classes, and such tasks require an estimation of fine-grained
shape similarities.

In this work, we introduce shape edit distance to measure similar-
ities between shapes. Intuitively, the shape edit distance (SHED)

Figure 1: The distance between shapes is measured by edit opera-
tions that transform the parts of one shape into corresponding parts
in the other shape.

measures the amount of effort needed to transform one shape into
the other, in terms of rearranging the parts of one shape so that
they closely match the parts of the other shape, or by adding and
deleting parts (Figure 1). SHED takes into account both the simi-
larity of shape structure and the similarity of individual shape parts.
Here, we follow the recent trend of representing shapes as graphs of
parts [Kalogerakis et al. 2012; Laga et al. 2013; Mitra et al. 2013;
Zheng et al. 2014]; however, we use the matching between graphs
to extract a global measure of shape similarity.

The strength of the shape edit distance is its tolerance to part re-
arrangements, additions and deletions. Thus, SHED is flexible in
quantifying the similarity between shapes that have partial similari-
ties, articulated parts or repositioned parts. This leads to a similarity
measure that accurately captures finer shape differences, enabling
a finer-grade organization of shapes. In contrast, other traditional
similarity measures are oblivious to the shape structure: for exam-
ple, the light field descriptor, popular in shape retrieval [Chen et al.
2003], is highly sensitive to any type of shape difference or defor-
mation, while in bag-of-feature approaches, the similarity is invari-
ant to the arrangement of shape components [Bronstein et al. 2011;
Litman et al. 2014].

We do not explicitly find a sequence of editing operations that trans-
forms one shape into the other, but indirectly estimate the edit dis-
tance by finding a part correspondence and using it to extract a
measure of similarity. First, shapes are segmented into parts and an
approximate correspondence is computed between the parts of each
shape. To find this correspondence, we develop an adaptive spectral
matching technique. Our method incorporates complex constraints
into an iterative optimization whereas previous solutions solved the
approximation in a one-shot manner. We do not enforce a strict
one-to-one correspondence, since a part in one shape may be du-
plicated or missing from the second shape. Instead, we apply con-
straints to the matching by associating additional costs when parts
change their context. Then, each match between two parts is as-
sociated with a transformation cost: a weighted sum of terms that
relate to the differences in part geometry, scaling and position of
the parts in the shape. Finally, the edit distance of the shape is the
aggregated cost of transforming all parts in the correspondence. We
also present supervised learning for automatic computation of the
weights from examples, as opposed to manual tuning, which could
be unintuitive.



We demonstrate the advantage of using SHED with a series of ex-
periments. First, we evaluate SHED in a quantitative manner by
constructing categorization trees that can be used for shape explo-
ration. We compare these trees to the trees generated using other
state-of-the-art similarity measures, as well as ground truth trees
created by expert users. In addition, we cluster shapes into a pre-
defined number of clusters and compare the results to clusters gen-
erated from the ground truth trees. These evaluations demonstrate
that the similarity estimated by SHED is preferable to other dis-
tance measures and leads to a more intuitive shape organization in
the intra-class context. In the inter-class context, we perform shape
retrieval according to SHED and show that it yields comparable
results to state-of-the-art similarity measures. Finally, in settings
where ground truth data is not well defined, we show qualitative re-
sults of nearest neighbors queries and embeddings of sets of shapes.

2 Related work

Our work comprises ideas such as shape comparison, graph edit
distances and part-based matching, which we discuss as follows.

Shape comparison, retrieval and exploration. There has been
much work on the development of shape similarity measures that
can be used for retrieval, exploration, or any type of shape com-
parison [Tangelder and Veltkamp 2008]. In terms of shape retrieval
and categorization, state-of-the-art approaches that currently give
the best performance are a combination of the light field descrip-
tor with bag-of-features and metric learning approaches [Li et al.
2012]. For intra-class organization, Xu et al. [2010] cluster a set
of shapes into different groups by factoring out the effect of non-
homogeneous part scaling and then establishing a correspondence
between shape parts. Huang et al. [2013a] present an approach for
fine-grained labeling of shape collections. Similarly to our work,
their goal is to learn a distance metric within a class of shapes to
capture finer shape differences. However, their method follows a
different paradigm than our work: the shapes are globally aligned
with an affine transformation followed by local deformations, and
the metric is learned on the aligned shapes. Individual parts ob-
tained from segmentation and their transformation are not consid-
ered as in our approach. In the more restricted context of isometric
matching, there has been much activity in deriving signatures for
shape comparison, such as GPS embedding [Rustamov 2007] or
heat kernel signature [Ovsjanikov et al. 2010]. Kurtek et al. [2013]
define a shape space and metric that capture more comprehensive
deformations than nearly isometric, but require surfaces of the same
topology. Bag-of-feature approaches [Bronstein et al. 2011; Litman
et al. 2014] are considered state of the art for retrieval of non-rigid
isometric shapes. The goal of these methods is to retrieve shapes
with similar topology from a collection of shapes in the same class,
such as human models in different poses. Hence, these methods are
not suitable for comparison of shapes with different part composi-
tion, structure or topology, which is the focus of our work.

Shape exploration necessitates not only the estimation of the sim-
ilarity of shapes to a query shape, but also a way of organizing
the shapes. Thus, different strategies have been proposed for ex-
ploration, such as the use of a deformable template [Ovsjanikov
et al. 2011], region selection [Kim et al. 2012], dynamically adapted
views of close neighborhoods [Kleiman et al. 2013], or parameter-
ization of the template space [Averkiou et al. 2014]. In the work of
Huang et al. [2013b], the goal is to obtain a qualitative organization
of a collection of shapes, since an organization based on a single
similarity measure is not always meaningful when comparing both
similar and dissimilar shapes. Likewise, our goal is to properly
capture both inter- and intra-class differences. However, instead of
aggregating the scores of several similarity measures, we develop
an edit distance to estimate the shape similarity.

Graphs of parts for shape analysis. The idea of describing 2D
shapes and images as graphs of parts has appeared prominently in
the field of computer vision. A few representative works include
matching shapes according to shock graphs [Sebastian et al. 2004]
and skeletons [Sundar et al. 2003], and matching images according
to graphs that represent their segmentations [Harchaoui and Bach
2007]. In the graphics literature, comparing shapes by matching
graphs was utilized for consistent joint segmentation [Huang et al.
2011] and co-segmentation [Sidi et al. 2011] of a set of shapes.
A group of works has estimated the similarity between shapes by
matching Reeb graphs, which are constructed from functions de-
fined on manifold shapes [Hilaga et al. 2001; Barra and Biasotti
2013]. Other works have explicitly segmented shapes and created
graphs of segments, with applications in shape synthesis [Kaloger-
akis et al. 2012] and semantic correspondence [Laga et al. 2013].
These works are directly related to the idea of modeling shapes by
combining parts from different models [Funkhouser et al. 2004].
Templates or part arrangements have also been learned from col-
lections, although these do not explicitly represent the connectivity
between parts [Kim et al. 2013; Zheng et al. 2014]. The fundamen-
tal difference of our approach to these representative works is that
we use the matching between two graphs of parts as input to esti-
mate the overall similarity between two shapes; the correspondence
between the graphs is the base for a distance measure that enables
us to quantify finer shape differences.

Graph matching and integer programming. The graph match-
ing problem is commonly posed as an integer quadratic program-
ming problem, which is NP-hard. There is a large body of work
regarding the relaxation of such problems to a tractable convex
quadratic programming optimization. Two prominent works in this
area are the spectral correspondence presented by Leordeanu and
Hebert [2005] and a relaxation of the quadratic optimization by
using bounding linear integer optimizations, proposed by Berg et
al. [2005]. These relaxations often yield good results in practice
in the one-to-one matching scenario. However, performing gra-
dient descent from a continuous relaxation of the integer prob-
lem has been shown to yield non-optimal permutations in most
cases [Lyzinski et al. 2015]. Indeed, the above methods perform
poorly in our one-to-many scenario where a part can correspond
to several parts in the other shape. Recently, Kezurer et al. [2015]
suggested lifting the problem to a higher dimension, followed by
a linear semi-definite relaxation. However, their method is com-
putationally expensive and does not extend easily to one-to-many
scenarios. Bommes et al. [2012] perform iterative relaxation of the
problem where in each iteration a single integer constraint is added
to the optimization. We follow a similar approach, but instead of
adding hard constraints in each step, we adjust the objective func-
tion to give precedence to solutions which are compatible with pre-
viously selected matches.

Graph edit distance. The graph edit distance has been used to
find a correspondence between graphs in several areas of visual
computing, such as computer vision and medical imaging [Gao
et al. 2010]. The idea of an edit distance is attractive because it
poses the problem of matching two graphs as finding a sequence
of operations that transforms one graph into the other. The edit
distance can consider not only the matching of similar nodes and
edges, but also their addition, duplication and deletion. However,
finding the minimal edit distance is NP-hard, so different heuris-
tics have been proposed to compute it. A common technique is
to use a graph kernel that estimates the similarity between two
nodes according to their attributes and their neighborhoods in the
graphs [Neuhaus and Bunke 2007]. Our shape edit distance does
not require an explicit sequence of operations, but an aggregation
of all the changes necessary to transform one shape into the other.



Figure 2: Difference between the semantic segmentation of two
shapes in (a) and (b), and their nearly convex decomposition in (c)
and (d). Note how, in (a) and (b), the bounding boxes of the parts
corresponding to the candle supports have considerably different
sizes. In (c) and (d), both supports are composed of small nearly
convex segments with similar sizes.

In the context of computer graphics, Fisher et al. [2011] used
graph kernels to estimate the similarity between graphs represent-
ing scenes composed of multiple objects. In addition, Denning and
Pellacini [2013] proposed a technique based on the edit distance to
quantify localized differences between two models. Their method
is better suited for comparing models generated by editing the same
source shape. On the other hand, our work is aimed at computing
the similarity between any pair of shapes. We derive the edit dis-
tance directly from a correspondence between graph nodes, as op-
posed to the methods above based on graph kernels. In addition,
we do not require a one-to-one correspondence between the shape
parts, but find a one-to-many correspondence and quantify the edit
distance without explicitly searching for a sequence of editing op-
erations. We explain the details in the next section.

3 Shape edit distance

Input, output, and shape representation. The edit distance
measure takes as input two shapes and returns a real number rep-
resenting the distance (dissimilarity) between the shapes. The dis-
tance is lower for shapes that have similar part geometry and struc-
ture, taking into account part rearrangements and partial correspon-
dence, and higher for shapes that differ in these aspects.

We represent each shape as a collection of parts and connections
among these parts, i.e., a graph of parts. Our method is generic and
can take as input different shape representations, although in this
work we represent the shapes as triangle meshes. The first step in
our method is the partitioning of input meshes into parts. One pos-
sibility is to use semantic segmentation techniques [Shapira et al.
2008; Shamir 2008]. However, semantic parts do not have a clear
definition and can greatly vary among different shapes. Moreover,
a semantic part can have a complex geometry, making its compar-
ison to other semantic parts non-trivial (Figure 2). In a sense, the
problem of comparing two complex segments can be as involved as
that of comparing two shapes. Instead, we segment the shapes into
simpler primitives that can be more easily analyzed. For this task,
we use the recent weakly-convex decomposition technique of van
Kaick et al. [2014], which partitions the input shapes into nearly
convex parts. Nearly convex parts are easier to analyze, since they
have a simpler geometry and can be approximated well by their
bounding boxes (Figure 2). In addition, the convex decomposition
of a shape is robust to small changes in the shape.

Our method also supports using a manual segmentation of the
shapes into parts, if such data is available. However, the results
in this paper were produced using the automatic weakly-convex de-
composition to provide a complete solution. The part graph is de-
fined by creating a node for each nearly convex part of the shape,
and an edge between adjacent parts in the shape segmentation.

Part similarities and matching. Given two shapes represented
as graphs of parts, our goal is to find a set of editing operations that
transform the parts of one shape into the parts of the other. Pos-
sible editing operations include deforming, displacing, duplicating,
adding, or removing parts. Then, a cost is associated with each
editing operation based on the extent of the transformation. The
editing costs are aggregated to produce the final shape edit distance
between the two input shapes.

In SHED, we derive the set of editing operations from a mapping
between the parts, since we can associate each pairwise match with
a single operation. This mapping depends on the similarity of parts
to each other as well as their context and the structure of the shape.
For example, two parts with different geometry can be matched if
their neighborhood is similar. On the other hand, two parts in differ-
ent locations in the shape can be matched if their geometry is sim-
ilar. Thus, the mapping of each part depends not only on the part
properties, but on the mapping of all other parts of the shape. This
makes the problem of finding the correct matching intractable, so
an approximate solution is necessary. To this end, we formulate our
objective in a quadratic form by constructing unary terms for each
match between two parts, and binary terms for pairs of matches,
representing only pairwise dependencies between matches. Then,
we develop a novel adaptive spectral matching technique to find an
approximate solution for this formulation. Our technique uses sim-
ilar principles as the method of Leordeanu and Hebert [2005], but
instead of solving the optimization once and applying constraints in
a greedy manner, we iteratively improve the optimization by incor-
porating the constraints that arise in previous steps. We explain the
computation of the matching in detail in Section 4.

Given the mapping between two shapes, a cost can be computed for
each edit operation. The costs reflect the following aspects of shape
similarity:

• Similarity of the geometry of the parts. For example, mor-
phing a cylindrical part into another cylindrical part is less
costly than morphing a cube into a cylinder, as the former
pair is geometrically more similar than the latter.

• Similarity of the structure of the part graphs. We allow
nodes to move in the part graph, with a cost proportional to
the magnitude of the structural change. Duplicated parts and
additional parts also incur additional costs as the structure of
the shape changes.

• Scaling of the parts. The scale of each part plays a critical
role in the global similarity of a shape; different shapes can
have similar graphs of parts where each part is scaled differ-
ently relative to its neighborhood. Thus, we introduce scale-
specific terms in our formulation.

To produce a scalar similarity measure between two shapes, the
terms described above need to be weighted and aggregated. A ques-
tion arises of how to determine the weights for each term. Shape
similarity is a subjective measure, so different users might have dif-
ferent views on which shapes are more similar, which implies that
different weights are necessary. Moreover, while a set of manually
selected weights can provide a reasonable similarity measure for
all shapes, it is clearly beneficial to fine-tune the weights to bet-
ter reflect the variation in a specific set. Therefore, we employ a
weight learning scheme that finds the optimal weights to match a
set of given distances. We elaborate on the details of the distance
formulation and the weight learning scheme in Section 5.

In Figure 3, we show the effect of considering these different fac-
tors in the edit distance. We compare a 2D embedding created with
multi-dimensional scaling, according to the similarities given by
SHED and the light field descriptor (LFD). For SHED, we show
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Figure 3: Embeddings obtained with multi-dimensional scaling on a small set of vases, based on the following distance measures: (a) LFD,
(b) SHED with default weights, (c) SHED with high weight for scaling changes, and (d) SHED with high weight for structural changes.

the results of using three configurations of weights: equal weights
for each term (b), weights learned from user input giving high pri-
ority to the scaling of parts (c), and weights learned from user input
giving high priority to the structural difference between parts (d).
The example set contains vases ranging from zero to four handles,
some with a slightly thinner body and some with a bigger base. The
consistency of distances provided by SHED yields an intuitive em-
bedding that is true to the observed properties of the shapes, namely
the number of handles and size of the parts. On the other hand,
the embedding generated by LFD groups shapes according to their
overall appearance, and does not take into account the finer details
of the shapes. Thus, LFD is not able to distinguish well between the
vases that differ by the number of handles, as their projected views
are very similar.

4 Part matching

The correspondence between two shapes can be represented as a list
of matches or pairings between two parts, one from each shape. The
mapping does not have to be one-to-one; a part in one shape can be
duplicated and have several matches in the other shape. However,
we constrain the mappings so that if a part is duplicated, then its
matching parts in the other shape are not duplicated, to ensure con-
sistency in the editing operations. In other words, for each edge
in the matching graph, the degree of at least one of its vertices
is one. The dependencies between different possible matches are
complex and can involve more than two matches. We approximate
such dependencies by using pairwise constraints only, so the prob-
lem becomes tractable. We formulate the correspondence problem
using unary terms that depend on a single match, and binary terms
involving a pair of matches. Unary terms represent the likelihood
of a match, or the affinity between a part in one shape and a part
in the other shape. Binary terms represent the compatibility of two
matches, i.e. the likelihood that both matches will be a part of the
same mapping.

Unary term. The unary term represents the amount of effort nec-
essary to morph the geometry of a part into another part. One of
the advantages of segmenting the shape into nearly convex parts
is the simplicity of each part, which allows us to use efficient de-
scriptors to effectively distinguish between part geometries. We
use the shape distribution signatures to represent the geometry of
the parts [Osada et al. 2002]. Specifically, we use the D1 descriptor
(also called shell histogram [Ankerst et al. 1999]), which computes
a histogram of the distance between uniformly sampled points on
the surface and the center of mass of the part, and the D2 descrip-
tor, which computes a histogram of the distance between pairs of
uniformly sampled points on the surface. These descriptors are rel-

atively simple and fast to compute, yet they are able to distinguish
well between parts with simple geometry such as nearly convex
parts. The D1 and D2 histograms are computed for each part, and
compared using χ2 distance, which is defined as

dχ2(Hi, Hj) =

K∑
k=1

(Hi(k)−Hj(k))2

Hi(k) +Hj(k)
, (1)

where Hi, Hj are the input histograms, and K is the number of
bins in each histogram. The geometry cost is thus

C(i, j) = α · dχ2(D1i, D1j) + (1− α) · dχ2(D2i, D2j) (2)

where D1i and D2i are respectively the D1 and D2 histograms for
part i, and α controls the balance between the D1 and D2 descrip-
tors. In our implementation α = 0.5 (equal weights). The cost is
transformed into an affinity using the natural exponent:

U(i, j) = exp(−C(i, j)/σ), (3)

where σ is chosen such that the affinity values have a wide spread
between 0 and 1. In our implementation σ = 0.5.

Binary term. The binary term represents the compatibility of one
match (i, j) to another match (k, l). When two shapes are simi-
lar, adjacent parts in one shape are expected to be mapped to ad-
jacent parts in the other shape. In addition, the scaling factor of
all matches is expected to be similar, since a match that has sig-
nificantly different scale than other matches in the mapping is less
likely to be correct. Therefore, we define a graph distance cost and
a scaling factor cost for each possible match.

The graph distance is defined for each pair of parts on the same
shape as the shortest path on the shape graph. We use the ratio
between the graph distances of each match to measure the compat-
ibility between matches:

G(i, j, k, l) =
max(g(i, k), g(j, l))

min(g(i, k), g(j, l))
− 1, (4)

where g(i, k) is the graph distance between parts i and k on the
same shape. This term is zero when the matches are fully compat-
ible, i.e. both pairs of parts have the same graph distance in their
respective shape, and is highest when one pair of parts is adjacent
and the other is not. Note that the cost is low when the graph dis-
tances between both pairs are high, so adjacent parts have more
weight in the total cost.

We define the scaling factor of each match as the ratio between the
volumes of the source and target part: s(i, j) = V OL(i)

V OL(j)
. Similarly



to the graph distance cost, we use the ratio between the scaling
factors of two matches as the scaling factor cost:

S(i, j, k, l) =
max(s(i, j), s(k, l))

min(s(i, j), s(k, l))
− 1. (5)

The binary term is defined as the affinity between two matches,
which is computed from the above costs as follows:

B(i, j, k, l) = β · exp(−(G(i, j, k, l) + S(i, j, k, l))/2). (6)

The parameter β controls the weight of the binary term compared
to the unary term. If β is large, the structure of the shape takes
precedence over the geometry of parts, and if β is small, the ge-
ometry of the parts is more important than the shape structure. If
β = 0, the only consideration is the part geometry and the corre-
spondence resembles a bag-of-features approach. In our implemen-
tation, β = 0.3.

Matching technique. There are several matching techniques
in the literature that find an approximate solution to pairwise-
constrained correspondence problems, such as the spectral match-
ing technique of Leordeanu and Hebert [2005], or the integer
quadratic programming relaxation proposed by Berg et al. [2005].
The main idea of these methods is that the pairwise constraints can
be presented in a quadratic form by constructing a matrix M of
n · m rows and n · m columns, where n and m are the numbers
of parts in the first and second shape, respectively. The diagonal
of M contains the values of the unary term U(i, j), and the val-
ues outside of the diagonal of M are the binary terms B(i, j, k, l).
The best correspondence is then represented by the binary vector x
that maximizes the product xTMx and does not break additional
constraints, such as the requirement for one-to-one mapping, etc.
This poses an integer quadratic programming problem, which is
NP-hard, therefore different approximation methods are suggested
in the above methods.

Leordeanu and Hebert [2005] propose to first solve an un-
constrained assignment problem in the continuous setting, where
x is allowed to have values in the range [0, 1]. This can be solved
easily by setting x to the normalized principal eigenvector of M .
Then, the result vector x is binarized in a greedy manner, taking
into consideration additional constraints in the process. In each
step, the match with the highest value in x is marked, and the values
of the match and all conflicting matches in x are reduced to zero.
This process continues until all values in x are zeros, and the final
mapping is returned as the collection of marked matches. Since the
constraints are not incorporated into the cost matrix, the greedy bi-
narization process is less successful when several conflicting map-
pings are possible. While strictly conflicting matches are filtered
out, matches which are compatible with those conflicting matches
might still be selected since their score is computed before the con-
flicting matches are discarded. This effect is most prominent in less
constrained scenarios such as ours. For example, we allow duplica-
tions of parts, but a matching in which almost all parts are matched
to the same part is valid but not desirable in most cases.

To address these issues, we introduce adaptive spectral matching,
which incorporates the desired constraints directly into the objec-
tive function, leading to a more consistent global solution to the
correspondence problem. We iteratively adjust the affinity matrix
M according to the constraints and re-run the eigenvector decom-
position. In this way, not only conflicting matches are excluded
from the solution, but matches that are compatible with conflicting
matches are also less likely to be selected in subsequent steps. The
iterative method starts by setting x to the principal eigenvector of
M , and then performs the following steps:

• Mark the match with the highest value in x.

• Set the affinity of the match in M to 1.

• Incorporate constraints into M , by setting the affinities of
each conflicting match or pair of matches to zero. In our case,
once a match (i, j) is selected, the compatibility of matches
that contain part i to matches that contain part j becomes zero
(i.e. the binary scores B(i, j′, i′, j) = 0 for each i′ and j′),
since having both of these matches would mean that there is a
many-to-many relation between parts i and j.

• Set x to the principal eigenvector of the adjusted M , and ig-
nore all matches that are conflicting or were already selected.

• Repeat until there are no more valid matches.

A few examples of matchings between segmented shapes using the
above algorithm are shown in Figure 4. In each sub-figure, the parts
are color coded according to their matching to the shape on the left.
Parts that are matched to the same part in the source shape have
the same color. Parts that are matched to more than one part in
the source shape have the colors of all matching parts mixed in a
random pattern. For example, in the bottom left of (a), indicated
by cyan and orange lines, both the top and the base of the source
vase were matched to the top of the target vase, since it has no base.
Similarly, for vases with one handle, both handles of the source
vase are matched to the parts of a single handle.

Minor differences in the segmentation of similar shapes do not typ-
ically cause significant changes in the matching. For example, as
can be seen by the red line in (a), two of the nearest neighbors of the
shape have an extra part in the handle. The extra part is matched to
a similar part, and the rest of the matching remains correct. Since
the duplicated part is small, the similarity between these shapes ac-
cording to SHED remains high. Similarly, most of the shapes on
the top rows of (c), (d) and (f) have minor differences in their seg-
mentation, yet they are considered similar by SHED. On the other
hand, significant differences in the segmentation may lead to incor-
rect matchings, as can be seen in (b) and (e). The vase in (b) is only
segmented into four parts while similar vases are segmented into
seven parts. Thus the matching between these vases is weak, and
matched parts are not similar in their geometry, scale and structure.
This causes SHED to assign low similarity score to similar shapes.

5 Distance formulation

The matching algorithm output is a list of matches (i, j) ∈M. The
transformation of each part in the shape is directly defined by the
matches it belongs to. Each transformation is associated with a cost
which is determined by the magnitude of change and the relative
volume of parts in the shape. Below we describe the four types of
transformations and how their associated costs are computed.

Change of geometry. For each match (i, j) in the map-
ping, the cost of deforming the geometry of one part into the
other is computed using the same formula for C(i, j) in Equa-
tion 2. Each term is weighted according to the volume of the
parts associated with it. For this, we define a match volume
m(i, j) = V OL(i) + V OL(j), and normalize it using the sum of
volumes of all matches m̂(i, j) = m(i, j)/

∑
(i,j)∈Mm(i, j). The

geometry cost C(i, j) is then weighted by the normalized match
volumes m̂(i, j).

Change of scale. Since the global scale of two shapes can be
different, the change of scale between parts must be measured com-
pared to the change of scale in other matches in the mapping. Thus,
the scaling costs are computed for each pair of matches (i, j) and
(k, l). The scale term is similar to the formula in Equation 5 and
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Figure 4: Matching between shapes. In each set, the source shape (left) is matched with three nearest neighbors according to SHED (top),
and three additional shapes which are not neighbors (bottom). Multiple target parts that match the same part in the source shape are marked
with the same color (see red line, top insets in (a)). A single target part that is matched with multiple parts in the source shape is marked with
mixed colors (see orange and cyan lines, bottom insets in (a)). Note that minor differences in the segmentation do not affect the matching or
nearest neighbors computation (a, d, f). On the other hand, significant differences in the segmentation may lead to incorrect matching (b, e).

measures the difference between the change of scale in the two
matches:

Cs(i, j, k, l) =
max(s(i, j), s(k, l))

min(s(i, j), s(k, l))
− 1. (7)

Note that Cs = 0 when the scale change of the two matches is
exactly the same, and Cs = 1 when the magnitude of change in
one match is exactly twice than the other match. The scale costs
are weighted by m̂(i, j) · m̂(k, l), such that the total weights of all
the pairs which contain match (i, j) is m̂(i, j).

Change of position. To detect a part that changed position, it
must be compared with its environment, so the position costs are
also computed for each pair of matches (i, j) and (k, l). We com-
pare the graph distance of parts i and k in the first shape g(i, k) and
the graph distance of parts j and l in the second shape g(j, l):

Cp(i, j, k, l) = abs(g(i, k)− g(j, l)). (8)

Note that if a part is duplicated, we compare the adjacency with
the most similar instance, such that if several parts are duplicated
together as a group they will only be compared to parts in the same
group. The position costs are also weighted by m̂(i, j) · m̂(k, l).

Duplication costs. When a part is duplicated, there are two or
more matches with the same part. Each of the matches incurs the
above costs if applicable. In addition, we aggregate the volume of
the shape that is being duplicated, by summing the volume of all
parts in all matches and subtracting the total volume of the shapes.
The remainder is the volume of all parts (in both shapes) that appear
twice or more in the matches. The duplication cost is normalized
by the total volume of the matches, so it represents the percent of
matches that have duplicated parts. It is formulated as:

Cd =

∑
(i,j)∈M

m(i, j)−
∑
i∈S

V OL(i)−
∑
j∈T

V OL(j)∑
(i,j)∈M

m(i, j)
, (9)

where S and T are the shapes being compared. Note that we do not
define a cost for parts that were added, since adding a new part can
be thought of as duplicating the most similar part and morphing it
to the desired shape.

Aggregation and weight learning. The shape edit distance is
formulated as a weighted sum of the above costs:

SHED(S, T ) = wg ·
∑

(i,j)∈M
m̂(i, j) · C(i, j)

+ws ·
∑

(i,j)∈M,(k,l)∈M
m̂(i, j) · m̂(k, l) · Cs(i, j, k, l)

+wp ·
∑

(i,j)∈M,(k,l)∈M
m̂(i, j) · m̂(k, l) · Cp(i, j, k, l)

+wd · Cd,

(10)

where wg, ws, wp and wd are the respective weights of the geom-
etry term, scale term, position term and duplication term. Since
semantic similarity between shapes is a subjective matter, it makes
sense to learn the values of these weights from user input. However,
similarity or semantic distance between two shapes cannot be quan-
tified numerically by the user. Instead, we ask users to indirectly
provide the semantic similarity of a set of shapes by generating cat-
egorization trees, which group together similar shapes in several
levels of hierarchy. For more details see Section 6. To learn the
weights from the categorization trees, we extract trios of shapes,
where in each trio two shapes are similar (i.e. they belong to the
same subtree of depth two), and the third shape is semantically far
(i.e. it belongs to a different subtree). Each trio of shapes defines
a relative relation of the form “shape A is closer to shape B than
to shape C”. Each categorization tree provides many thousands of
trios, from which we randomly select 1000 trios as a training set. To
learn the weights from such relations, we employ a weight learning
scheme suggested by Schultz and Joachims [2004]. Each relation
between shapes A, B, and C, is transformed into a constraint of the
form: D(A,C) − D(A,B) ≥ 1 where D(A,B) is the weighted
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Figure 5: Categorization trees automatically generated for a set of vases according to SHED, LFD and SPH. The vases are colored according
to their shape style. Note that the organization of shapes is more consistent when using SHED (3 categorization errors) than when using LFD
or SPH (6 categorization errors each), as seen by the number of shapes with a different color than their lowest level neighbors in the tree.

Figure 6: Comparison of automatically generated trees to ground truth trees, according to the average difference in the degree of separation.

distance between shapes A and B. Then, a convex quadratic op-
timization is formulated and solved similarly to a support vector
machine. For more details see [Schultz and Joachims 2004].

Using this method, we can fine tune the weights for a specific set of
shapes such as lamps or vases. For example, the scaling differences
between parts affects the semantic distance between lamps more
than it affects the semantic distance between vases. Alternatively,
we can use trios from categorization trees of several sets of shapes
to learn a global set of weights. Using this method, we propose a
set of default weights (see Table 1) that would approximate well the
semantic similarity of any set of shapes. Note that these weights
also reflect the relations between the different units in which the
different costs are measured.

6 Evaluation

The distance between two shapes cannot be directly measured or
estimated numerically by a human observer, hence evaluating the
accuracy of a similarity measure is somewhat challenging. Still,
we are able to compare SHED with state-of-the-art distance mea-
sures, namely the light field descriptor (LFD) [Chen et al. 2003]
and the spherical harmonic descriptor (SPH) [Kazhdan et al. 2003],
and demonstrate its success in various applications. We evaluate the
results quantitatively using ground truth data for shape exploration
and clustering, and qualitatively for nearest neighbors queries and
embedding, where ground truth data is not well defined.

Datasets. We evaluate SHED using three sets of shapes from the
COSEG dataset [Wang et al. 2012] and three sets from the Princeton
Segmentation Benchmark (PSB) [Chen et al. 2009]. In addition,
we collected a set of airplanes from Google Warehouse and other

online resources. The set of airplanes and the sets in the COSEG
dataset were enriched by introducing finer intra-class variation. The
enriched sets include 100 lamps, 80 vases, 70 airplanes, and 40
candelabra, and contain shapes that vary in their part composition,
geometry, and articulation. The PSB sets include 20 humans, 20
hands and 20 Teddy bears, which vary mostly in articulation.

Categorization trees. We present an application where catego-
rization trees of shapes are automatically generated for each en-
riched set. The resulting trees hierarchically organize the shapes in
a set and can be used for exploration. The trees are created using
Self-Tuning Spectral Clustering [Zelnik-Manor and Perona 2004],
which is a non-parametric clustering method, i.e., the number of
clusters in each set is selected automatically. We used this method
recursively to build a categorization tree for each distance measure
(SHED, LFD, and SPH). An example of the generated trees on a
subset of shapes is presented in Figure 5, where the shapes are col-
ored according to their shape style. Note that the tree generated
using SHED has fewer categorization errors. The generated trees
for the full sets can be found in the supplementary material.

To evaluate the quality of the generated trees in a quantitative man-
ner, we use multiple ground truth categorization trees. Since creat-
ing a single categorization tree of a set may be subjective, we asked
three expert users to independently create a tree for each enriched
set. All of the ground truth trees can be found in the supplemen-
tary material. The ground truth trees are compared to the generated
trees by averaging the difference in the degree of separation (DoS)
between each pair of shapes in the trees. The DoS is defined as
the length of the path between two shapes in the tree [Huang et al.
2013b]. The average difference of DoS measures whether shapes
are organized in a similar manner in two trees, without being influ-
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Figure 7: Comparison of clustering results according to SHED, LFD and SPH on a set of lamps. The shapes are clustered into six groups
and colored according to their ground-truth clusters.

Figure 8: Comparison of autamatically generated clusterings to ground truth, according to the Rand Index (see text for details).

enced by the specific structure of each tree. To compare the trees
at different levels of granularity, we truncate the trees up to a given
number of levels by connecting all the shapes in lower levels di-
rectly to their ancestor at the lowest allowed level. The results for a
level are given by averaging the difference in DoS over all pairs of
shapes and all ground truth trees. The results are shown in Figure 6
(lower values imply trees closer to the ground truth). The curve la-
beled GT denotes the average difference in DoS between the ground
truths. It indicates how much variation exists among the different
ground truths and establishes a bound for the accuracy. Note that
trimming a tree after two levels effectively provides a quantitative
comparison of the first level of clustering. Similarly, trimming the
tree after three levels provides a comparison of the clustering gen-
erated in the second level, and so on for other levels.

Clustering. In addition to the hierarchical clustering, we also ex-
periment with clustering when the number of clusters is known in
advance. We cluster each set of shapes using the self-tuning spec-
tral clustering method mentioned above [Zelnik-Manor and Perona
2004], this time providing the number of clusters as a parameter.
We compute ground truth clusterings from each ground truth tree
by measuring the degree of separation between every two shapes,
and then using the computed DoS as a measure of shape similarity
to cluster the shapes with the same clustering method. We gener-
ate clusterings according to SHED, LFD, and SPH and measure the
difference between the generated clusters and the ground truth us-
ing the Rand Index [Chen et al. 2009]. Figure 8 shows the average
Rand Index over all ground truths for each set and measure (higher
values imply clusters closer to the ground truth). The curve la-
beled GT denotes the average Rand Index between the ground truth
clusterings. It indicates the level of agreement between clusterings
generated from different ground truth trees. Figure 7 shows visual
results for a subset of lamps.

Shape retrieval. As a shape retrieval experiment, a nearest
neighbors search was performed for each shape according to SHED
and LFD. Figure 9 shows a selection of shapes from four different
sets along with the retrieved nearest neighbors. The full results con-
taining each of the shapes as a query are available in the supplemen-
tary material. The distances measured by SHED reflect changes in
part composition such as parts that change position on the graph or
parts that exist in one shape and not the other, as well as changes
in geometry. Therefore, shapes retrieved using SHED tend to have
similar part composition. For example, vases tend to have the same
number of handles as the query shape (g, i), and candelabra tend
to have a similar number of candles (e). In contrast, some of the
shapes retrieved by LFD have a different shape structure (c, i). Ad-
ditionally, SHED retrieves shapes whose parts have a similar ge-
ometry to the parts of the query shape (b, f, g, k), whereas shapes
retrieved by LFD are more varied. Moreover, SHED deals particu-
larly well with articulations (a), added parts (b), and partial shape
matching (h), which pose a challenge to existing methods.

Ground truth data is not well defined for such tasks in intra-class
scenarios, where all the shapes belong to the same class. For such
scenarios we show qualitative results only. However, for inter-class
scenarios, we can quantify how many of the retrieved shapes belong
to the same class as the query shape. Figure 11 shows the precision
recall curves obtained for all shapes from the PSB sets using SHED,
LFD and SPH. The curve labeled “SHED Equal Weights” shows the
results when all weights are set to 1. The curve labeled “SHED”
shows the results when using the default weights suggested in Sec-
tion 3. Note that these weights were learned using a different sets
of shapes, and the results could potentially be improved further by
finetuning the weights specifically for the PSB sets.

Embedding to a lower dimension. Another important applica-
tion that benefits from defining a more accurate distance measure
between shapes is mapping a set of shapes onto a low dimensional
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Figure 9: Nearest neighbors for four sets, ordered by similarity to a query. In each example, the shape on the center left is the query, the first
row are the 5 nearest neighbors ordered according to SHED, and the second row are the neighbors ordered according to LFD.

Set Name Default Lamps Candles Vases Airplanes

Geometry 0.4795 0.4376 0.2779 0.4788 0.4285
Scale 0.1258 0.1921 0.1794 0.0256 0.0206
Position 0.0034 0.1216 0.1203 0.1697 0.0047
Duplication 0.3914 0.2486 0.4224 0.5396 0.5462

Table 1: Learned weights for different sets of shapes. Each column
is normalized such that its sum is one.

manifold. We use standard multi-dimensional scaling (MDS) to
generate an embedding of a set of shapes in two dimensions. In
Figure 3 we show a toy example comparing the embedding gener-
ated by SHED and LFD for a small set of vases. For inter-class
similarity estimation, we show in Figure 10 the MDS embedding of
shapes from the PSB sets using SHED, LFD, and SPH. The figure
clearly shows that SHED produces an intuitive map with a signif-
icant distinction between different sets, while LFD and SPH tend
to produce less organized maps where shapes of different sets are
mixed together. This experiment and the quantitative evaluation in
Figure 11 allow us to conclude that SHED is effective when used
to separate shapes into different classes (inter-class context), while
the previous experiments show that SHED is able to appropriately
quantify finer shape differences, which is of importance in an intra-
class context.

Weights. The weights for the sets of lamps, candles, vases, and
airplanes were learned from training sets of 1000 trios each, ob-
tained from the ground truth of each set separately. In addition,
default weights were learned using a training set of 1000 trios, ob-
tained from the ground truth of all four sets collectively. The de-
fault weights were used to produce the results for the PSB sets in
Figures 10 and 11. The weights for each set are given in Table 1.

Timing. Our method can be decomposed into two parts: finding
the matching between two shapes and computing the SHED accord-
ing to a given matching and weights. The computation time of the
matching algorithm described in Section 4 depends on the number
of parts in each shape, and takes up to 5 seconds for shapes with up
to 20 parts. Given the matching and weights, computing the SHED
takes a fraction of a second, and the computation of the entire set
of 100 lamps, or 4950 pairs of shapes, takes a total of 9 seconds.
Segmenting the shapes using [van Kaick et al. 2014] takes up to 5
minutes per shape. Note that the segmentation method can be easily
replaced. In some cases the segmentation of shapes can be given as
input, in which case the method is very fast to compute.

7 Conclusion

We introduce SHED, an edit distance that quantifies shape simi-
larity based on a structural comparison of shapes. The shape edit
distance captures re-arrangements, additions, and removals of parts.
We show a variety of applications which benefit from an accurate
distance measure between shapes. Finally, we demonstrate that
SHED leads to a more intuitive estimation of the similarity between
two shapes than state-of-the-art methods, when comparing shapes
within the same class as well as shapes from different classes.

Future work and limitations. The current formulation of SHED
takes into account the similarity of the shape parts and the shape
structure in terms of connectivity of the parts. Additional relation-
ships between parts can be considered, for example, the difference
in rotation of pose after an alignment of matched parts. Incorporat-
ing pose considerations may constitute an advantage on sets where
the pose of the shape parts is one of the main dissimilarity fac-
tors, while it may be less suitable for more general sets where pose-
invariance is sought.
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Figure 10: Embedding obtained with multi-dimensional scaling on a set of articulated shapes with three classes. The insets show the distance
matrix for each method, where dark green is low distance and white or light green is high distance. Note how SHED groups the shapes into
their respective classes, while the distance matrices and embeddings given by LFD and SPH are less organized.

Figure 11: Precision-recall on sets of articulated shapes.

An adequate segmentation of the shapes is required for the com-
putation of SHED. In general, segmentation is an ill-posed prob-
lem. As a practical solution, we opted to use a segmentation into
approximately convex parts, although other segmentation methods
can be used. For example, methods that aim at obtaining a close-
to-semantic segmentation of the shape are possible, although their
usage would require the introduction of more sophisticated mea-
sures to compare the geometry of parts.

Finally, distances between shapes are subject to interpretation and
are dependent on the semantics of the shapes. Thus, we would like
to conduct an investigation to gain insight on how humans perceive
finer shape differences, to enhance our edit distance. Quantification
of intra-class distances is still an open avenue for further research.
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2010. One point isometric matching with the heat kernel. Com-
puter Graphics Forum (SGP) 29, 5, 1555–1564.

OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. 2011.
Exploration of continuous variability in collections of 3D shapes.
ACM Trans. on Graph (SIGGRAPH) 30, 4, 33:1–10.

RUSTAMOV, R. M. 2007. Laplace-Beltrami eigenfunctions for
deformation invariant shape representation. In Symp. on Geom.
Proc., 225–233.

SCHULTZ, M., AND JOACHIMS, T. 2004. Learning a distance met-
ric from relative comparisons. Advances in neural information
processing systems (NIPS), 41.

SEBASTIAN, T., KLEIN, P., AND KIMIA, B. 2004. Recognition
of shapes by editing their shock graphs. IEEE Trans. Pat. Ana.
& Mach. Int. 26, 5, 550–571.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6, 1539–1556.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. The Visual Computer 24, 4, 249–259.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM Trans.
on Graph (SIGGRAPH Asia) 30, 6, 126:1–10.

SUNDAR, H., SILVER, D., GAGVANI, N., AND DICKINSON, S.
2003. Skeleton based shape matching and retrieval. In Shape
Modeling International, 130–139.

TANGELDER, J. W. H., AND VELTKAMP, R. C. 2008. A survey
of content based 3D shape retrieval methods. Multimedia Tools
and Applications 39, 3, 441–471.

VAN KAICK, O., FISH, N., KLEIMAN, Y., ASAFI, S., AND
COHEN-OR, D. 2014. Shape segmentation by approximate con-
vexity analysis. ACM Trans. Graph. 34, 1, 4:1–11.

WANG, Y., ASAFI, S., VAN KAICK, O., ZHANG, H., COHEN-OR,
D., AND CHEN, B. 2012. Active co-analysis of a set of shapes.
ACM Trans. on Graph (SIGGRAPH Asia) 31, 6, 157:1–10.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z. 2010. Style-content separation by anisotropic part
scales. ACM Trans. on Graph (SIGGRAPH Asia) 29, 6.

ZELNIK-MANOR, L., AND PERONA, P. 2004. Self-tuning spectral
clustering. In NIPS, vol. 17, 1601–1608.

ZHENG, Y., COHEN-OR, D., AVERKIOU, M., AND MITRA, N. J.
2014. Recurring part arrangements in shape collections. Com-
puter Graphics Forum (Eurographics) 33.


