
INTRODUCTION TO

RENDERING TECHNIQUES
Yanir Kleiman 22 Mar. 2012

What is 3D Graphics?

 Why 3D?

 Draw one frame at a time

 X 24 frames per second

 150,000 frames for a feature film

 Realistic rendering is hard

 Camera movement is hard

 Interactive animation is hard

 Model only once

 Color / texture only once

 Realism / hyper realism

 A lot of reuse

 Computer time instead of artists time

 Can be interactive (games)

What is 3D Graphics?

 Artists workflow – in a nutshell
Create Model

Texture (Color) Rig (Bones)

Lighting Animation

Rendering

3D Model

Bones
Controls

Keyframes

Texture Files

Lights
Camera

Post Processing

What is Rendering?

3D Model Bones
Controls

Keyframes

Texture Files

Lights

Camera

???

Image

What is Rendering?

3D Model Bones
Controls Keyframes

Texture Files

Lights

Camera

???

Image

+ + = Geometry

Geometry

 Consider:
 Perspective

 Occlusion

 Color / Texture

 Lighting

 Shadows

 Reflections / Refractions

 Indirect illumination

 Sampling / Antialiasing

What is Rendering?

Texture Files
Lights

Camera ???

Image

Geometry

Two Approaches

 Start from geometry

 For each polygon / triangle:

 Is it visible?

 Where is it?

 What color is it?

 Start from pixels

 For each pixel in the final image:

 Which object is visible at this pixel?

 What color is it?

Rasterization

Ray Tracing

RASTERIZATION
Introduction to Rendering Techniques 22 Mar. 2012

Rasterization

 Basic idea: Calculate projection of each
triangle onto the 2D image space

 Extensively used and researched

 Optimized by GPU

 Strongly parallelized

 OpenGL

 DirectX

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Transform each triangle from
object space to world space

 Local space -> Global space

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Computation is based on angles
between light source, object and
camera (details later)

 Backface culling

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 1: Transform triangles from
world space to camera space
(orthogonal transformation)

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 1: Transform triangles from
world space to camera space
(orthogonal transformation)

 Camera is at (0, 0, 0)

 X axis is right vector

 Y axis is up vector

 Z axis is “back vector”
(away from camera)

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 2: Perspective Projection

 Depends on focal length (D)

 Calculate Z-Buffer

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Remove triangles that fall outside
the clipping plane

 Determine boundaries of triangles
partially within the clipping plane

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Drawing the triangles in 2D

 Scanning horizontal scan lines for
each triangle

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Check z-buffer for intersections

 Use precalculated vertex lighting

 Interpolate lighting at each pixel
(smooth shading)

 Texture: Every vertex has a texture
coordinate (u, v)

 Interpolate texture coordinates to
find pixel color

 Triangles are independent except for z-buffer

 Every step is calculated by a different part in the GPU

Rasterization – Parallel Processing

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Transformation

Lighting

Projection

Transformation

Transformation Lighting

… … … … …

 Modern GPUs can draw 600M polygons per second

 Suitable for real time applications (gaming, medical)

 But what about…

 Shadows?

 Reflections?

 Refractions?

 Antialiasing?

 Indirect illumination?

Rasterization – Parallel Processing

 Aliasing examples

Rasterization – Antialiasing

 Aliasing examples

Rasterization – Antialiasing

Aliasing Anti-aliased

 Antialiasing: Trying to reduce aliasing effects

 Simple solution: Multisampling

 Only the last step changes!

 During scan conversion,
sample subpixels and average

 This is equivalent to rendering a larger image

 Observation: Rendering twice larger resolution costs
less then rendering twice – since scanline is efficient
and the rest doesn’t change!

Rasterization – Antialiasing

 Render an image from the light’s point of view
(the light is the camera)

 Keep “depth” from light of every pixel in the map

Rasterization – Shadow Maps

 During image render:
Calculate position and depth on the
shadow map for each pixel in the
final image (not vertex!)

 If pixel depth > shadow map depth
the pixel will not receive light from
this source

Shadow map

 This solution is not optimal

 Shadow map resolution is not correlated to render
resolution – one shadow map pixel can span a lot of
rendered pixels!

 Shadow aliasing

 Only allows sharp shadows

 Semi-transparent objects

Rasterization – Shadow Maps

Various hacks and
complex solutions

Blurred hard
shadows
(shadow map)

True soft
shadows
(ray tracing)

 Not a true reflection – a “cheat”

 Precalculate reflection map from a point in the center
(can be replaced by an existing image)

 The reflection map is mapped to a
sphere or cube surrounding the scene

 Each direction (vector) is mapped to
a specific color according to where it
hits the sphere / cube

 During render, find the reflection color
according to the reflection vector
of each pixel (not vertex!)

Rasterization – Reflection Maps

R

V
R

V

N

 Can produce fake reflections (no geometry needed)

 Works well for:

 Environment reflection (landscape, outdoors, big halls)

 Distorted reflections

 Weak reflections (wood, plastic)

 Static scenes

 Not so good for:

 Reflections of near objects

 Moving scenes

 Mirror like objects

 Optical effects

Rasterization – Reflection Maps

 Examples: Reflection maps

Rasterization – Reflection Maps

Used to create the map

 Examples: Ray traced reflections

Rasterization – Reflection Maps

 Examples:

Rasterization – Reflection Maps

Reflection Map Ray Traced Reflection

 There is no real solution

 Refraction maps: same as reflection
maps but the angle is computed using
refractive index

 Only simulates the first direction
change, not the second (that would
require ray tracing)

 Refraction is complex so fake refractions
are hard to notice

 Doesn’t consider near objects, only
static background

Rasterization – Refractions

 Other “fake” solutions:

 Distort the background according to a precomputed map

 “Bake” ray traced refractions into a texture file
(for static scenes)

Rasterization – Refractions

Refraction Map Distort Background

 Indirect / global illumination means taking into account light
bouncing off other objects in the scene

Rasterization – Indirect Illumination

 Surprisingly, there are methods to approximate
global illumination using only rasterization,
without ray tracing

 “High-Quality Global Illumination Rendering

Using Rasterization”, Toshiya Hachisuka,

The University of Tokyo

 Main idea: Use a lot of fast rasterized
“renders” from different
angles to compute indirect
illumination at each point

 Rasterization is super quick
on GPU

Rasterization – Indirect Illumination

 Results:

Rasterization – Indirect Illumination

Photon mapping
(ray tracing)

Rasterizer (GPU)

Results of equal render time

TRANSFORMATIONS
Introduction to Rendering Techniques 22 Mar. 2012

 We saw 2 types of transformations

 Viewing transformation: Can move, rotate and scale the
object but does not skew or distort objects

 Perspective projection: This special transformation
projects the 3D space onto the image plane

 How do we represent such transformations?

 Homogeneous coordinates: Adding a 4th dimension to the
3D space

Transformations

























































1????

????

????

????

'

'

'

'

z

y

x

w

z

y

x

 Types of transformations

Viewing Transformations

























































11000

000

000

000

'

'

'

'

z

y

x

c

b

a

w

z

y

x

Scale

























































11000

100

010

001

'

'

'

'

0

0

0

z

y

x

z

y

x

w

z

y

x

Translate (move)


























































11000

0cossin0

0sincos0

0001

'

'

'

'

z

y

x

w

z

y

x





Rotations


























































11000

0cos0sin

0010

0sin0cos

'

'

'

'

z

y

x

w

z

y

x







































 





















11000

0100

00cossin

00sincos

'

'

'

'

z

y

x

w

z

y

x





 Any combination of these matrices is a viewing
transformation matrix

 Last coordinate is only for moving the pivot,
w’ is always 1 and will not be used

 How to find the transformation to a certain view
(could be camera, light, etc)?

Viewing Transformations

 After the transformation:

 Eye position should be at (0, 0, 0)

 X axis = right vector

 Y axis = up vector

 Z axis = back vector

Viewing Transformations

 It is easy to construct the invert transformation,
from camera coordinates to world

Viewing Transformations

Right
Vector

Up
Vector

Back
Vector

Eye
Position

 Examples:

 Now all we have to do is invert T (always invertible),
and we have our view transformation

Viewing Transformations

(0, 0, 0) -> Eye Position Camera X Axis -> Origin + Right vector

 A projection transform points from higher dimension to a
lower dimension, in this case 3D -> 2D

 The most simple projection is orthographic

 Simply remove the Z axis after
the viewing transformation

Projections

 Perspective projections map points onto the view plane
toward the center of projection (the viewer)

 Since the viewer is at (0, 0, 0) the math is very simple

 D is called the focal length

 x’ = x*(D/z)

 y‘ = y*(D/z)

Perspective Projections

 Matrix form of the perspective projection using
homogeneous coordinates

 Singular matrix – projection is many to one

 D = infinity gives an orthographic projection

 Points on the viewing plane z = D do not move

 Points at z = 0 are not allowed – usually by using a clipping
plane at z = ε

Perspective Projections

d 0 0 0

0 d 0 0

0 0 d 0

0 0 1 0





















x

y

z

1





















 dx dy dz z []  d

z
x
d

z
y d



 


 

Divide by 4th coordinate

(the “w” coordinate)

LIGHTING
Introduction to Rendering Techniques 22 Mar. 2012

RAY TRACING
Introduction to Rendering Techniques 22 Mar. 2012

Ray Tracing

 Basic idea: Shoot a “visibility ray” from center of
projection (camera) through each pixel in the
image and find out where it hits

 This is actually backward tracing
– instead of tracing rays from
the light source, we trace the
rays from the viewer back to
the light source

Ray Tracing

 Backward tracing is called Ray Casting

 Simple to implement

 For each ray find intersections
with every polygon – slow…

 Easy to implement realistic
lighting, shadows, reflections
and refractions, and indirect
illumination

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

 Compute color based on surface radiance

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

 Compute color based on surface radiance

 Computing radiance requires casting rays toward
the light source, reflected and refracted objects
and recursive illumination rays from reflected and
refracted objects

Ray Tracing – Casting Rays

 Construct a ray through viewing plane:

Ray Tracing – Casting Rays

 Construct a ray through viewing plane:

 2D Example:

For every i between (–width/2) and (width/2)

Ray Tracing - Intersections

 Finding intersections

 Intersecting spheres

 Intersecting triangles (polygons)

 Intersecting other primitives

 Finding the closest intersection in a group
of objects / all scene

Ray Tracing - Intersections

 Finding intersections with a sphere:
Algebraic method

Solve for t

Ray Tracing - Intersections

 Finding intersections with a sphere:
Geometric method

Solve for t

Ray Tracing - Intersections

 Finding intersections with a sphere:
Calculating normal

 We will need the normal to compute lighting,
reflection and refractions

Ray Tracing - Intersections

 Finding intersections with a triangle:

 Step 1: find intersection with the plane

 Step 2: check if point on plane is inside triangle

 Many ways to solve…

Ray Tracing - Intersections

 Step 1: find intersection with the plane:
Algebraic method

Not necessary

parallel to ray…

Ray Tracing - Intersections

 Step 2: Check if point is inside triangle
Algebraic method

If all 3 succeed the point

is inside the triangle

Ray Tracing - Intersections

 Step 2: Check if point is inside triangle
Paramteric method

Using dot products
(P-T1) •(T2-T1) and (P-T1) •(T3-T1)

Ray Tracing - Intersections

 Ray tracing can support other primitives

 Cone, Cylinder, Ellipsoid: similar to sphere

 Convex Polygon:
Point in Polygon is a basic problem in computational
geometry and has algebraic solutions

 Concave Polygon:
Same plane intersection
More complex point-in-polygon test

 Alternatively, divide the polygon to triangles and check
each triangle

Ray Tracing - Intersections

 Find closest intersection:

 Simple solution is go over each polygon in the
scene and test for intersections

 We will see optimizations for this later… (maybe)

 We have an intersection – what now?

 Computing lighting can be similar to the process
when rasterizing (using normals)

 This is not for a vertex but for the intersection point

 For better accuracy: ray trace lighting

 At each intersection point cast
a ray towards every light source

 Provides lighting, shadows,
reflections, refractions and
indirect illumination

 Easy to compute soft shadows,
area lights

Ray Tracing – Computing Color

Ray Tracing – Shadows

 Shadow term tell which light source are blocked

 SL = 0 if ray is blocked,
SL = 1 otherwise

 Direct illumination is only
calculated for unblocked
lights

 Illumination formula:

Shadow term

Ray Tracing – Soft Shadows

 Why are real life shadows soft?

 Because light source is not truly a point light

penumbra

penumbra

umbra

Finite Light source Point Light source

Ray Tracing – Soft Shadows

 Simulate the area of a light source by casting
several (random) rays from the surface to a small
distance around the light source

Point light source: The surface is completely lighted by

the light source.

Surface Surface

Finite light source: 3/5 of the rays reach the light

source. The surface is partially lighted.

Ray Tracing – Reflection / Refraction

 Recursive ray tracing: Casting rays for reflections
and refractions

 For every point there are
exact directions to sample
reflection and refraction
(calculated from normal)

 Illumination formula:

Ray Tracing – Reflection / Refraction

 Cast a reflection ray

 Compute color at the hit
point (using ray tracing again!)

 Multiply by reflection term
of the material

 To avoid aliasing sample
several rays in the required
direction and average

Ray Tracing – Reflection / Refraction

 … And the same for refractions

 Last coefficient is transparency

 KT = 1 for translucent objects
KT = 0 for opaque objects

 Consider refractive index
of object

 Again use several rays to
avoid aliasing

Ray Tracing – Reflection / Refraction

 Ray tree represents recursive illumination computation

Ray Tracing – Reflection / Refraction

 Number of rays grows exponentially for each level!

 Common practice: limit maximum depth

 After 2-3 bouncing reflections,
the cost is high and there
is little benefit

Ray Tracing – Antialiasing

Ray Tracing – Antialiasing

 Aliasing in ray tracing can be severe, since only one
ray is casted per pixel

 The computation is based on the size of the pixels,
not on the size of the actual polygons which can be
relatively small

 Supersampling: Instead of casting one ray per pixel,
cast several per pixel

 Since this is done at the first step, it is as inefficient
as possible (running the whole process again)

Ray Tracing – Indirect Illumination

 What we’ve seen so far is only an approximation of
real lighting: The rays are only casted directly
towards the light

 Use reflections, but not indirect lighting

 Global illumination: A method to approximate
indirect lighting from every direction

Ray Tracing – Indirect Illumination

 Example:

 Top image uses direct lighting only

 Bottom image uses indirect
illumination

 Notice the ground is “reflected”
naturally on the character

 Not because of reflective material
but because of lighting contribution

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

 Step 1: Cast regular rays through each pixel in
viewing plane

 Step 2: Cast random rays from visible point

 Step 3: Recurse

 Very expensive!

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

1 random ray per pixel
no recursion

16 random rays per pixel
3 levels of recursion

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

 Need a lot of rays and
recursions to look good

 Random rays cause
flickering problems

 Computation time
measured in hours!

 Common practice:
Bake global illumination map
of one frame and use it for all
frames

64 random rays per pixel
3 levels of recursion

Ray Tracing - Ambient Occlusion

 Ambient Occlusion is a simpler form of global illumination

 Cast random rays from visible point and calculate distance
to the nearest object

 The more rays hit near
objects, the point is
occluded and therefore
darker

 A cheat - “make nice”
button

 Everything looks better
with ambient occlusion!

Ray Tracing - Ambient Occlusion

 Good for contact shadows

 Examples:

Summary

 Fast renderer

 Optimized for GPUs

 Antialiasing is easy and fast

 Scales well for larger images

 Parallel computing possible on GPU

 Shadows are hard to compute
and inaccurate

 Relections and refractions are a hack

 Indirect illumination complex but
possible (rarely used in practice)

Rasterization Ray Tracing
 Slow renderer - only today we see

some real time ray tracing possible

 Not optimized for GPUs

 Antialiasing is expensive

 Doesn’t scale so well

 Parallel computing is easy

 Shadows are easy including sofy
shadows

 Relections and refractions are easy

 Indirect illumination complex but
possible (rarely used in practice)

What Artists Do

 In practice: Both are used side by side

 Games:
Real time, mostly rasterized except for special effects

 Movies / Animation:

 Not real time, but time = money
Usually a mix of rasterization and ray traced
reflections / refractions.

 Global illumination is sometimes used but usually
faked using direct lights

What Artists Do

 Common practice: Use render layers and composite
later using a video editing program (like After Effects)

 Render layers:

 Color (radiance)

 Reflections

 Refractions

 Depth map

 Ambient Occlusion

 Makes it easy to make fast changes later without
rendering again

THAT’S ALL, FOLKS!
Introduction to Rendering Techniques 22 Mar. 2012

