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What is 3D Graphics? 

 Why 3D? 

 Draw one frame at a time 

 X 24 frames per second 

 150,000 frames for a feature film 

 Realistic rendering is hard 

 Camera movement is hard 

 Interactive animation is hard 

 Model only once 

 Color / texture only once 

 Realism / hyper realism 

 A lot of reuse 

 Computer time instead of artists time 

 Can be interactive (games) 



What is 3D Graphics? 

 Artists workflow – in a nutshell 
Create Model 

Texture (Color) Rig (Bones) 

Lighting Animation 

Rendering 

3D Model 

Bones 
Controls 

Keyframes 

Texture Files 

Lights 
Camera 

Post Processing 



What is Rendering? 

3D Model Bones 
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What is Rendering? 

3D Model Bones 
Controls Keyframes 

Texture Files 

Lights 

Camera 
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Image 

+ + = Geometry 

Geometry 



 Consider: 
 Perspective 

 Occlusion 

 Color / Texture 

 Lighting 

 Shadows 

 Reflections / Refractions 

 Indirect illumination 

 Sampling / Antialiasing 

What is Rendering? 

Texture Files 
Lights 

Camera ??? 

Image 

Geometry 



Two Approaches 

 Start from geometry 

 For each polygon / triangle: 

 Is it visible? 

 Where is it? 

 What color is it? 

 Start from pixels 

 For each pixel in the final image: 

 Which object is visible at this pixel? 

 What color is it? 

Rasterization 

Ray Tracing 



RASTERIZATION 
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Rasterization 

 Basic idea: Calculate projection of each 
triangle onto the 2D image space 

 Extensively used and researched 

 Optimized by GPU 

 Strongly parallelized 

 OpenGL 

 DirectX 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Transform each triangle from  
object space to world space 

 Local space -> Global space 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Computation is based on angles 
between light source, object and 
camera (details later) 

 

 

 

 

 

 

 Backface culling 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Step 1: Transform triangles from 
world space to camera space  
(orthogonal transformation) 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Step 1: Transform triangles from 
world space to camera space  
(orthogonal transformation) 

 Camera is at (0, 0, 0) 

 X axis is right vector 

 Y axis is up vector 

 Z axis is “back vector” 
(away from camera) 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Step 2: Perspective Projection 

 Depends on focal length (D) 

 

 

 

 

 

 

 Calculate Z-Buffer 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Remove triangles that fall outside 
the clipping plane 

 Determine boundaries of triangles 
partially within the clipping plane 

 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Drawing the triangles in 2D 

 Scanning horizontal scan lines for 
each triangle 

 

 

 

 



Rasterization – Graphics Pipeline 

Image 

Model Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

 Check z-buffer for intersections 

 Use precalculated vertex lighting 

 Interpolate lighting at each pixel 
(smooth shading) 
 

 Texture: Every vertex has a texture 
coordinate (u, v) 

 Interpolate texture coordinates to 
find pixel color 



 Triangles are independent except for z-buffer 

 Every step is calculated by a different part in the GPU 

Rasterization – Parallel Processing 

Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

Transformation 

Lighting 

Projection 

Clipping 

Scan Conversion 

Transformation 

Lighting 

Projection 

Clipping 

Transformation 

Lighting 

Projection 

Transformation 

Transformation Lighting 

… … … … … 



 Modern GPUs can draw 600M polygons per second 

 Suitable for real time applications (gaming, medical) 

 But what about… 

 Shadows? 

 Reflections? 

 Refractions? 

 Antialiasing? 

 Indirect illumination? 

 

Rasterization – Parallel Processing 



 Aliasing examples 

 

Rasterization – Antialiasing 



 Aliasing examples 

 

Rasterization – Antialiasing 

Aliasing Anti-aliased 



 Antialiasing: Trying to reduce aliasing effects 

 Simple solution: Multisampling 

 Only the last step changes! 

 During scan conversion,  
sample subpixels and average 

 

 This is equivalent to rendering a larger image 

 Observation: Rendering twice larger resolution costs  
less then rendering twice – since scanline is efficient 
and the rest doesn’t change! 

 

Rasterization – Antialiasing 



 Render an image from the light’s point of view 
(the light is the camera) 

 Keep “depth” from light of every pixel in the map 

 

Rasterization – Shadow Maps 

 During image render:  
Calculate position and depth on the 
shadow map for each pixel in the 
final image (not vertex!) 

 If pixel depth > shadow map depth 
the pixel will not receive light from 
this source 

Shadow map 



 This solution is not optimal 

 Shadow map resolution is not correlated to render 
resolution – one shadow map pixel can span a lot of 
rendered pixels! 

 Shadow aliasing 

 Only allows sharp shadows 

 Semi-transparent objects 

Rasterization – Shadow Maps 

Various hacks and 
complex  solutions 

Blurred hard 
shadows 
(shadow map) 

True soft 
shadows 
(ray tracing) 



 Not a true reflection – a “cheat” 

 Precalculate reflection map from a point in the center 
(can be replaced by an existing image) 

 The reflection map is mapped to a  
sphere or cube surrounding the scene 

 Each direction (vector) is mapped to  
a specific color according to where it  
hits the sphere / cube 

 During render, find the reflection color  
according to the reflection vector  
of each pixel (not vertex!) 

 

Rasterization – Reflection Maps 

R

V
R

V

N



 Can produce fake reflections (no geometry needed) 

 Works well for: 

 Environment reflection (landscape, outdoors, big halls) 

 Distorted reflections 

 Weak reflections (wood, plastic) 

 Static scenes 

 Not so good for: 

 Reflections of near objects 

 Moving scenes 

 Mirror like objects 

 Optical effects 

 

Rasterization – Reflection Maps 



 Examples: Reflection maps 

Rasterization – Reflection Maps 

Used to create the map 



 Examples: Ray traced reflections 

Rasterization – Reflection Maps 



 Examples: 

Rasterization – Reflection Maps 

Reflection Map Ray Traced Reflection 



 There is no real solution 

 Refraction maps: same as reflection 
maps but the angle is computed using 
refractive index 

 Only simulates the first direction 
change, not the second (that would 
require ray tracing) 

 Refraction is complex so fake refractions 
are hard to notice 

 Doesn’t consider near objects, only 
static background 

Rasterization – Refractions 



 Other “fake” solutions: 

 Distort the background according to a precomputed map 

 “Bake” ray traced refractions into a texture file  
(for static scenes) 

Rasterization – Refractions 

Refraction Map Distort Background 



 Indirect / global illumination means taking into account light 
bouncing off other objects in the scene 

Rasterization – Indirect Illumination 



 Surprisingly, there are methods to approximate 
global illumination using only rasterization, 
without ray tracing 

 “High-Quality Global Illumination Rendering 

Using Rasterization”, Toshiya Hachisuka, 

The University of Tokyo 

 Main idea: Use a lot of fast rasterized 
“renders” from different 
angles to compute indirect 
illumination at each point 

 Rasterization is super quick 
on GPU 

Rasterization – Indirect Illumination 



 Results: 

Rasterization – Indirect Illumination 

Photon mapping 
(ray tracing) 

Rasterizer (GPU) 

Results of equal render time 
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 We saw 2 types of transformations 

 Viewing transformation: Can move, rotate and scale the 
object but does not skew or distort objects 

 Perspective projection: This special transformation 
projects the 3D space onto the image plane 

 How do we represent such transformations? 

 Homogeneous coordinates: Adding a 4th dimension to the 
3D space 

Transformations 
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 Types of transformations 

Viewing Transformations 
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Translate (move) 
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Rotations 
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 Any combination of these matrices is a viewing 
transformation matrix 

 Last coordinate is only for moving the pivot,  
w’ is always 1 and will not be used 

 How to find the transformation to a certain view 
(could be camera, light, etc)? 

 

Viewing Transformations 



 After the transformation: 

 Eye position should be at (0, 0, 0) 

 X axis = right vector 

 Y axis = up vector 

 Z axis = back vector 

 

Viewing Transformations 



 It is easy to construct the invert transformation, 
from camera coordinates to world 

 

Viewing Transformations 

Right 
Vector 

Up 
Vector 

Back 
Vector 

Eye 
Position 



 Examples: 
 
 
 
 
 
 

 Now all we have to do is invert T (always invertible), 
and we have our view transformation 

Viewing Transformations 

(0, 0, 0) -> Eye Position Camera X Axis -> Origin + Right vector 



 A projection transform points from higher dimension to a 
lower dimension, in this case 3D -> 2D 

 The most simple projection is orthographic 

 Simply remove the Z axis after 
the viewing transformation 

Projections 



 Perspective projections map points onto the view plane 
toward the center of projection (the viewer) 

 Since the viewer is at (0, 0, 0) the math is very simple 

 D is called the focal length  

 x’ = x*(D/z) 

 y‘ = y*(D/z) 

 

Perspective Projections 



 Matrix form of the perspective projection using 
homogeneous coordinates 

 

 

 

 

 Singular matrix – projection is many to one 

 D = infinity gives an orthographic projection 

 Points on the viewing plane z = D do not move 

 Points at z = 0 are not allowed – usually by using a clipping 
plane at z = ε 

Perspective Projections 
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RAY TRACING 
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Ray Tracing 

 Basic idea: Shoot a “visibility ray” from center of 
projection (camera) through each pixel in the 
image and find out where it hits 

 This is actually backward tracing 
– instead of tracing rays from  
the light source, we trace the  
rays from the viewer back to  
the light source 



Ray Tracing 

 Backward tracing is called Ray Casting 

 Simple to implement 

 For each ray find intersections  
with every polygon – slow… 

 Easy to implement realistic  
lighting, shadows, reflections  
and refractions, and indirect 
illumination 

 



Ray Tracing 

 For each sample (pixel or subpixel): 

 Construct a ray from eye position through viewing 
plane 



Ray Tracing 

 For each sample (pixel or subpixel): 

 Construct a ray from eye position through viewing 
plane 

 Find first (closest) surface that intersects the ray 



Ray Tracing 

 For each sample (pixel or subpixel): 

 Construct a ray from eye position through viewing 
plane 

 Find first (closest) surface that intersects the ray 

 Compute color based on surface radiance 



Ray Tracing 

 For each sample (pixel or subpixel): 

 Construct a ray from eye position through viewing 
plane 

 Find first (closest) surface that intersects the ray 

 Compute color based on surface radiance 

 Computing radiance requires casting rays toward 
the light source, reflected and refracted objects 
and recursive illumination rays from reflected and 
refracted objects 



Ray Tracing – Casting Rays 

 Construct a ray through viewing plane: 



Ray Tracing – Casting Rays 

 Construct a ray through viewing plane: 

 2D Example: 

For every i between (–width/2) and (width/2) 



Ray Tracing - Intersections 

 Finding intersections 

 Intersecting spheres 

 Intersecting triangles (polygons) 

 Intersecting other primitives 

 Finding the closest intersection in a group 
of objects / all scene 



Ray Tracing - Intersections 

 Finding intersections with a sphere: 
Algebraic method 

 

Solve for t 



Ray Tracing - Intersections 

 Finding intersections with a sphere: 
Geometric method 

 

Solve for t 



Ray Tracing - Intersections 

 Finding intersections with a sphere: 
Calculating normal 

 We will need the normal to compute lighting, 
reflection and refractions 



Ray Tracing - Intersections 

 Finding intersections with a triangle: 

 Step 1: find intersection with the plane 

 Step 2: check if point on plane is inside triangle 

 Many ways to solve… 



Ray Tracing - Intersections 

 Step 1: find intersection with the plane: 
Algebraic method 

Not necessary 

parallel to ray… 



Ray Tracing - Intersections 

 Step 2: Check if point is inside triangle 
Algebraic method 

If all 3 succeed the point 

is inside the triangle 



Ray Tracing - Intersections 

 Step 2: Check if point is inside triangle 
Paramteric method 

Using dot products 
(P-T1) •(T2-T1)  and  (P-T1) •(T3-T1) 



Ray Tracing - Intersections 

 Ray tracing can support other primitives 

 Cone, Cylinder, Ellipsoid: similar to sphere 

 Convex Polygon:  
Point in Polygon is a basic problem in computational 
geometry and has algebraic solutions 

 Concave Polygon: 
Same plane intersection 
More complex point-in-polygon test 

 Alternatively, divide the polygon to triangles and check 
each triangle 

 



Ray Tracing - Intersections 

 Find closest intersection: 

 Simple solution is go over each polygon in the 
scene and test for intersections 

 We will see optimizations for this later… (maybe) 

 

 We have an intersection – what now? 

 



 Computing lighting can be similar to the process 
when rasterizing (using normals) 

 This is not for a vertex but for the intersection point 

 For better accuracy: ray trace lighting 

 At each intersection point cast 
a ray towards every light source 

 Provides lighting, shadows,  
reflections, refractions and  
indirect illumination 

 Easy to compute soft shadows,  
area lights 

Ray Tracing – Computing Color 



Ray Tracing – Shadows 

 Shadow term tell which light source are blocked 

 SL = 0 if ray is blocked,  
SL = 1 otherwise 

 Direct illumination is only 
calculated for unblocked 
lights 
 

 Illumination formula: 

Shadow term 



Ray Tracing – Soft Shadows 

 Why are real life shadows soft? 

 Because light source is not truly a point light 

penumbra 

penumbra 

umbra 

Finite Light source Point Light source 



Ray Tracing – Soft Shadows 

 Simulate the area of a light source by casting 
several (random) rays from the surface to a small 
distance around the light source 

Point light source: The surface is completely lighted by 

the light source. 

Surface Surface 

Finite light source: 3/5 of the rays reach the light 

source. The surface is partially lighted. 



Ray Tracing – Reflection / Refraction 

 Recursive ray tracing: Casting rays for reflections 
and refractions 

 For every point there are 
exact directions to sample 
reflection and refraction 
(calculated from normal) 

 

 Illumination formula: 



Ray Tracing – Reflection / Refraction 

 Cast a reflection ray 

 Compute color at the hit 
point (using ray tracing again!) 

 Multiply by reflection term 
of the material 

 To avoid aliasing sample 
several rays in the required 
direction and average 



Ray Tracing – Reflection / Refraction 

 … And the same for refractions 

 Last coefficient is transparency 

 KT = 1 for translucent objects 
KT = 0 for opaque objects 

 Consider refractive index 
of object 

 Again use several rays to 
avoid aliasing 



Ray Tracing – Reflection / Refraction 

 Ray tree represents recursive illumination computation 



Ray Tracing – Reflection / Refraction 

 Number of rays grows exponentially for each level! 

 Common practice: limit maximum depth 

 After 2-3 bouncing reflections, 
the cost is high and there 
is little benefit 



Ray Tracing – Antialiasing 



Ray Tracing – Antialiasing 

 Aliasing in ray tracing can be severe, since only one 
ray is casted per pixel 

 The computation is based on the size of the pixels, 
not on the size of the actual polygons which can be 
relatively small 

 Supersampling: Instead of casting one ray per pixel, 
cast several per pixel 

 Since this is done at the first step, it is as inefficient 
as possible (running the whole process again) 



Ray Tracing – Indirect Illumination 

 What we’ve seen so far is only an approximation of 
real lighting: The rays are only casted directly 
towards the light 

 Use reflections, but not indirect lighting 

 Global illumination: A method to approximate 
indirect lighting from every direction 



Ray Tracing – Indirect Illumination 

 Example: 

 Top image uses direct lighting only 

 

 Bottom image uses indirect 
illumination 

 Notice the ground is “reflected” 
naturally on the character 

 Not because of reflective material 
but because of lighting contribution 



Ray Tracing – Indirect Illumination 

 Monte-Carlo path tracing 

 Step 1: Cast regular rays through each pixel in 
viewing plane 

 Step 2: Cast random rays from visible point 

 Step 3: Recurse 

 

 Very expensive! 



Ray Tracing – Indirect Illumination 

 Monte-Carlo path tracing 

1 random ray per pixel 
no recursion 

16 random rays per pixel 
3 levels of recursion 



Ray Tracing – Indirect Illumination 

 Monte-Carlo path tracing 

 Need a lot of rays and 
recursions to look good 

 Random rays cause 
flickering problems 

 Computation time  
measured in hours! 

 Common practice:  
Bake global illumination map 
of one frame and use it for all 
frames 

64 random rays per pixel 
3 levels of recursion 



Ray Tracing - Ambient Occlusion 

 Ambient Occlusion is a simpler form of global illumination 

 Cast random rays from visible point and calculate distance 
to the nearest object 

 The more rays hit near 
objects, the point is  
occluded and therefore 
darker 

 A cheat - “make nice” 
button 

 Everything looks better 
with ambient occlusion! 



Ray Tracing - Ambient Occlusion 

 Good for contact shadows 

 Examples: 



Summary 

 Fast renderer 
 

 Optimized for GPUs 

 Antialiasing is easy and fast 

 Scales well for larger images 

 Parallel computing possible on GPU 

 Shadows are hard to compute 
and inaccurate 

 Relections and refractions are a hack 

 Indirect illumination complex but 
possible (rarely used in practice) 

Rasterization Ray Tracing 
 Slow renderer - only today we see 

some real time ray tracing possible 

 Not optimized for GPUs 

 Antialiasing is expensive 

 Doesn’t scale so well 

 Parallel computing is easy 

 Shadows are easy including sofy 
shadows 

 Relections and refractions are easy 

 Indirect illumination complex but 
possible (rarely used in practice) 



What Artists Do 

 In practice: Both are used side by side 

 Games:  
Real time, mostly rasterized except for special effects 

 Movies / Animation:  

 Not real time, but time = money 
Usually a mix of rasterization and ray traced  
reflections / refractions.  

 Global illumination is sometimes used but usually 
faked using direct lights 



What Artists Do 

 Common practice: Use render layers and composite 
later using a video editing program (like After Effects) 

 Render layers: 

 Color (radiance) 

 Reflections 

 Refractions 

 Depth map 

 Ambient Occlusion 

 Makes it easy to make fast changes later without 
rendering again 



THAT’S ALL, FOLKS! 
Introduction to Rendering Techniques 22 Mar. 2012 


