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Abstract

Large datasets of 3D objects require an intuitive way to browse and quickly explore shapes from the collection.
We present a dynamic map of shapes where similar shapes are placed next to each other. Similarity between 3D
models exists in a high dimensional space which cannot be accurately expressed in a two dimensional map. We
solve this discrepancy by providing a local map with pan capabilities and a user interface that resembles an online
experience of navigating through geographical maps. As the user navigates through the map, new shapes appear
which correspond to the specific navigation tendencies and interests of the user, while maintaining a continuous
browsing experience. In contrast with state of the art methods which typically reduce the search space by selecting
constraints or employing relevance feedback, our method enables exploration of large sets without constraining
the search space, allowing the user greater creativity and serendipity. A user study evaluation showed a strong
preference of users for our method over a standard relevance feedback method.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

3D object repositories have gone from being small and
scarce to large and abundant, a change that led to the de-
velopment of new ways to easily and intuitively search and
explore these available collections. In recent years, the prob-
lem of shape retrieval and exploration has been a major focus
of many [OLGM11, BBGO11, TGY∗09]. Methods to deter-
mine the level of similarity between objects have been re-
searched extensively [OFCD02, TV04]. Since in most cases
the distinction between a relevant and irrelevant retrieved
shape is user subjective, relevance feedback techniques were
incorporated into many retrieval systems, allowing the user
to guide the search according to personal preference and
taste [LMT05].

Generally, relevance feedback involves presenting the
user with a set of suggested shapes, out of which the pre-
ferred or relevant ones are marked as such by the user. The
user is then presented with shapes similar to the selected
ones. The process may then be repeated several times un-
til the user is satisfied, often employing machine learning
techniques in order to aggregate and refine previous selec-
tions. The navigation experience with this approach is not
continuous and it often requires the user to go through a te-

dious task involving many queries by selecting individual
preferable shapes. A more intuitive and smooth exploration
experience can be achieved by letting the user navigate over
an endless two dimensional map of shapes, where similar
shapes are displayed closely together. Such a map enables
a continuous navigation through the space of shapes, thus
eliminating the need for explicit relevance feedback on indi-
vidual queries. The challenge, however, is the generation of
such maps of 3D shapes.

The search space of 3D shapes is of high dimensionality.
Generating a cohesive global manifold that preserves simi-
larity relations among all shapes is therefore challenging, if
at all possible. However, when a user interactively navigates
a map-like interface, only a small portion of the search space
is displayed at a time. Our key idea is that for such naviga-
tion, global requirements can be relaxed. Navigation is done
over a pseudo-map, where the data is dynamically organized
into a local manifold, only in the region currently observed
by the user. The benefit of generating a dynamic map on
the fly is twofold. First, global constraints are relaxed and
a locally continuous map can be generated, in which a pair
of shapes are near in the embedding only if they are rela-
tively close in the original high dimensional space. Second,
the generated map can interactively change according to the
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user’s interest and direction of browsing, thus providing an
effective browsing experience without intrusively querying
the user.

Figure 1 illustrates the navigation process in our solution.
The user views a local subset of shapes, ordered such that
similar shapes are next to each other. In this particular ex-
ample, trucks with higher or bigger bodies typically appear
in the top right and trucks with smaller bodies appear in the
bottom left corner. The user decides to focus on trucks with
smaller bodies, and thus pans towards the bottom left corner.
Another patch of the map is revealed, and instantly filled
with models of trucks similar to the models framed by the
red rectangle. The currently displayed map can be figura-
tively viewed as a window that shows a local patch of the
pseudo-map. Figure 2 shows a screenshot of our system dur-
ing a typical browsing session.

The challenge in generating such pseudo-maps is to cre-
ate local manifolds that keep the sense of continuity. That is,
the user pans over the pseudo-map while the manifold is per-
ceived to be continuous. We present a technique of embed-
ding shapes onto dynamic pseudo-manifolds, where the rel-
ative positions of shapes respect only local high-dimensional
relations. Relative distances among the displayed shapes are
not necessarily preserved, allowing for an efficient usage of
the display space and a spatially dense representation of the
shapes domain. In contrast with common dimensionality re-
duction techniques (e.g. MDS), the end result of our method
is not a global map which contains all shapes at once. The
generated local pseudo-maps only exist temporarily within
the viewport of the user; when the user navigates to reveal
a new region of the map, only local relations to the previ-
ous map are maintained. Navigation over the pseudo-map
enables a free-form exploration, where users can quickly and
seamlessly direct the search towards relevant models of their
choice.

Our dynamic map bears some resemblance to the self or-
ganizing map (SOM) [Koh90], a popular dimensionality re-
duction method that produces a dense and intuitive grid-like
structure. However, an SOM provides a global solution, in
which local discontinuities may occur frequently. In addi-
tion, it entails a computationally intensive training process,
which is applied globally as a pre-process, making it diffi-
cult to use on a very large dataset with frequent updates. Our
technique is local and computationally inexpensive, which
makes it a viable option for massive online datasets of shapes
which are constantly changing.

The generation of local neighborhoods in the dynamic
map is based on the assumption that for high dimensional
data such as 3D models, short distances are more accurately
measured than long distances. We thus use only the shortest
distances between shapes in our dataset; only the distances
to k nearest neighbors (with k being a small positive integer)
of each shape in the dataset are considered. A dense set is
expected to have shorter distances, and thus more accurate,

Figure 1: Browsing shapes using a dynamic map. The map
displays a region of shapes ordered by similarity (A). Drag-
ging the map to the up right corner (B) reveals new shapes
which are similar to shapes in the dragging direction (C).

than a sparse set, hence our method is especially suitable for
massive datasets.

2. Related Work

A common means to explore large shape repositories is by
searching for similar shapes through a series of queries. The
problem of searching for similar shapes to a given query
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object is known as "shape retrieval". During the last two
decades a huge body of work in that area has focused on
the development of various shape descriptors and signatures
to facilitate retrieval. Among them are descriptors based
on statistical moments [ETA02, NK03, KFR03], distance
[OFCD02], symmetry [KFR04], volume [ZC01, SSCO08].
For more information see a survey by [TV04]. An alterna-
tive approach was introduced by Bronstein et al. [BBGO11].
Instead of global shape signatures they compute local fea-
tures such as Heat Kernel Signature (HKS) [SOG09], quan-
tize them into geometric words, and use them in a bag of
words manner to discover similarities between shapes.

Relevance feedback [LMT05, CLT06, ASYS10] helps
guide the shape retrieval process according to the user’s own
individual preference. While this process may be effective
at filtering relevant elements out of a massive collection, the
use of relevance feedback in commercial search interfaces is
still relatively rare [RL03]. One possible explanation is that
it requires users to make relevance judgments on each item,
which is an effortful user task [RL03,CCTL01]. Our method
is inspired by that concept, but operates on the implicit feed-
back given by the user’s advancement through the dynamic
map.

Shape exploration is commonly carried out by interac-
tively navigating through design galleries based on a para-
metric model [SSCO09]. Design galleries have been used
for model suggestions based on part correspondence [CK10,
KLM∗12] and semantic context [TGY∗09]. Vieira et al.
[VBP∗09] utilize design galleries for learning descriptive
views of 3D objects, where the user supplies the training data
by selecting good and bad object positions. Another form of
exploration is presented in Yang et al. [YYPM11], where a
shape space is characterized from an input mesh and a set of
non-linear constraints is then used for exploration and nav-
igation of new designs that are aligned with the given con-
straints. Umetani et al. [UIM12] present a method for shape
exploration (in this case - furniture) constrained by physical
requirements. The user is able to focus on the aesthetic side
of the design while the system enforces physical soundness.
Ovsjanikov et al. [OLGM11] extract a deformation model
from an input shape to explore in a constrained manner the
variability within a set of similar shapes.

Planar Mapping. Generating a two dimensional map of
high dimensional elements is in essence a dimensionality re-
duction task. Common dimensionality reduction techniques
such as multidimensional scaling (MDS) or locally linear
embedding (LLE) [RS00] create a global manifold that aims
to preserve the distances among the high dimensional data
points, to the extent possible. Such global solutions are ben-
eficial for applications such as clustering and classification,
which rely on the underlying geometry or spread of data.

Our premise is, that for browsing tasks, there is no need
for an accurate representation of the original distances be-
tween shapes. In fact, an even spread of shapes over the

Figure 2: A screenshot of a typical browsing session.

map area can be more beneficial than an accurate represen-
tation of the original geometry of the search space, espe-
cially in cases where the original data includes very distinc-
tive clusters which may appear too far apart for easy nav-
igation. The above mentioned self-organizing map [Koh90]
produces a grid which preserves similarity between elements
without preserving the distance. Works such as [SKK04]
and [LLD12] utilize SOM to visualize a given small set of
elements (up to a few hundreds samples) in a global cohesive
map. Such methods work well for small sets, however they
are too computationally intensive and globally constrained
to be effective for massive datasets.

3. Map Generation

We provide the user with a dynamic grid-like map which
is instantly and continuously generated during user interac-
tion. The input to the map generation process is a precom-
puted nearest neighbors graph with a similarity score for
each edge. The map can be seeded around a specific shape
or constrained by any number of shapes. As the user is nav-
igating by panning the map, the map is extended locally to
the region of interest, using previously placed shapes as con-
straints. The map is generated by iteratively filling in empty
cells in the grid with the most compatible shape for each cell.
The compatibility of a shape to a cell in the grid depends on
the shapes that are already assigned to adjacent cells in the
grid; each adjacent shape votes for its nearest neighbors as
candidates, and the scores of all candidates are accumulated
to produce a majority vote.

Every model M in the dataset is associated with a list of
nearest neighbors M′ ∈ Near(M), and their respective sim-
ilarity scores S(M,M′). Each cell c in the grid is connected
to a weighted list of adjacent cells ci with respective weights
wi. For example, in our implementation each cell is con-
nected to neighbors on the five by five grid centered at the
cell in question, with weights that are inversely correlated
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with the Euclidean distance between the cells. We refer to
existing models that occupy the adjacent cells of cell c as
reference models or R(c) where each filled cell ci is associ-
ated with a model Mi. The compatibility score for placing a
model M in cell c is defined as the weighted sum of similarity
scores for each neighbor that appears in the list of reference
models:

C(M,c) = ∑
Mi∈R(c)

wi ·S(M,Mi)

where S(M,Mi) = 0 when model Mi is not a nearest neigh-
bor of model M. At each iteration, we choose a vacant cell
c in the grid, and search for the model that maximizes the
compatibility score,

Mc = argmax
M

C(M,c).

To reduce the search space, we only consider models which
are nearest neighbors of the reference models. We also ex-
clude shapes that already appear on the map from the candi-
dates list, to avoid repetitions. Since the number of adjacent
cells is bound (depending on the grid size that is chosen), the
computational cost of creating the map amounts to a small
constant, independent of the dataset size, which allows cre-
ating the map on-the-fly during user interaction at a rapid
fashion.

The voting process gives precedence to cells that are filled
early in the map generation process. We use this to further
enhance the user experience, by selecting the vacant cells in
accordance with the user actions. In general, we give prece-
dence to cells that have the most filled cells which are di-
rect neighbors in the 8-connected grid. However, since the
map is a regular grid, often there will be ties and many cells
will have the same number of reference models, for example
along the edge of the previous region of interest. We break
ties using the following process. We compute vectors from
the previous center of the map to each cell, and to the new
center of the map. We then select the cell with smallest an-
gle between the map’s center vector and the cell vector. This
causes the grid to start growing from the user’s focus area on
and outwards into the rest of the map.

Figure 3 illustrates the order in which empty cells in the
grid are filled. The user drags the map two cells up and one
cell to the right. The center of the user’s viewport thus moves
on the map in the opposite direction; two cells down and
one cell to the left. The cells marked with numbers will be
filled first in their respective order, followed by the rest of
the cells on the grid. Existing shapes which are closer to the
panning direction effectively have more weight in the map
generation, since their neighbors are selected first.

The map-filling algorithm is simple and easy to adjust to
custom graphs. It can be applied to graphs of any shape, and
does not require regularity or planarity. Supporting weighted
graphs requires a minute change in the compatibility score.

Figure 3: The order in which cells in the map are filled is
relative to the direction of browsing. In this example, the user
dragged the map two models up and one model to the right.
The gray dot and red dot, respectively, mark the previous and
new center of the viewport. The numbers state the order in
which the first six cells on the map are filled.

3.1. Zoom Levels

Our dynamic maps support zooming out to see a larger vari-
ety of shapes, and zooming in on a region to see more sim-
ilar shapes. We support zooming operations by selecting a
hierarchy of high-level delegates that represent every model
in the dataset. All models in the dataset are contained in the
first zoom level; every delegate in the second level represents
a group of models in the first level, every delegate in the third
level represents a group of delegates in the second level, and
so on. For each zoom level we connect the delegates in a
nearest neighbors graph as described below.

When the user is browsing the map in zoom level l, only
models of level l′ ≥ l are displayed, and the k-NN graph
of level l is used. When the user zooms in to level l − 1,
the shapes are spaced out by a given amount, as illustrated
in Figure 4. In our implementation the map size doubles, so
there is one vacant cell between every two shapes in every di-
rection. Then the map generation process fills the gaps using
the k-NN graph of level l− 1. Precedence is again given to
cells that have the most filled neighbor cells, with ties broken
arbitrarily. Note that higher level delegates are not excluded
from the map when browsing lower levels, and can appear
among low level models according to the low level k-NN
graph.

When the user zooms out to level l + 1, a continuous
browsing experience is maintained by keeping some of the
models that were displayed. As with zooming in, spacing
may vary. In our implementation the map size is reduced by
half in every direction towards the center, so there is one
shape left out of every four around the shape closest to the
center of the map. Since the map is now smaller than the
region of interest, shapes are filled around it using the map
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Figure 4: Zooming in. (A) The initial map. (B) The map after a zoom in operation, with empty spaces between the shapes. (C)
The map is filled with new shapes that match their surrounding.

generation process and the k-NN graph of level l + 1. Since
some of the models are potentially from a lower level, they
may be missing from the k-NN graph, in which case they use
the k-NN lists of their closest delegates.

Delegate selection can be implemented using various al-
gorithms, as long as every model has at least one delegate
in its nearest neighbors list. In our implementation we use a
straightforward algorithm, which can be done once for the
whole dataset or incrementally when new shapes are added.
For each shape in the dataset, we check whether one of its
nearest neighbors is already a high-level delegate. If none of
the nearest neighbors of the shape is a delegate, the shape
itself becomes a delegate for all of its neighbors. The same
process can be done when adding a new shape to an existing
dataset.

Next, a list of high-level nearest neighbors is created for
each high-level delegate M. A high-level neighbor is a dele-
gate M′ that has at least one common nearest neighbor with
M. The score of the high-level neighbors is the maximum ac-
cumulated score of the path in the k-NN graph that connects
the two delegates:

S(M,M′)= max
M′′∈Near(M)∩Near(M′)

(S(M,M′′)+S j(M
′′,M′)).

If a delegate has more than k high-level neighbors, only the
k neighbors with the least scores are kept. This process is
repeated recursively on the high-level k-NN graph to create
multiple zoom levels. The list of high-level delegates and
their k-NN graph is computed as part of the pre-processing,
so there is no additional computational cost for browsing
when there are multiple zoom levels.

4. Shape Similarity

The map generation is decoupled from the k nearest neigh-
bors computation, which could be replaced by any k-NN
dataset. However, the question remains how to effectively
measure similarity between shapes in order to define the
nearest neighbors of each shape.

Many shape descriptors have been suggested for the task

of shape retrieval. A most popular one is the lightfield de-
scriptor (LFD) introduced by [CTSO03]. LFD consists of
rendering orthographic silhouettes of the model from ten
different angles on a dodecahedron. To compare two mod-
els, the rendered silhouettes of the models are compared. All
possible rotations of the dodecahedron (60 in total) are con-
sidered to compensate rigid rotations of the compared mod-
els. LFD is one of the most effective descriptors to discrimi-
nate between different shape classes [TV04, SMKF04]. Yet,
a nearest neighbors query using LFD may still contain irrel-
evant shapes. An example is shown in Figure 5.

To identify similar objects where LFD fails to do so,
we consider two more shape descriptors. D2 descriptor
[OFCD02] is a histogram of Euclidean distance between
pairs of points on the shape. The pairs are sampled in
a way that ensures invariance to triangulation. Last, we
compute a histogram of the discrete Gaussian curvature
[MDS∗02, ALH05], sampled over each vertex in the shape.
Each of the descriptors has different strengths and weak-
nesses, and we aim at combining the results from all de-
scriptors to identify different aspects of similarity between
objects.

A few works combine different features to produce a uni-
fied similarity score. Atmosukarto et al. [ALH05] sort all
the objects in the dataset based on their distance to a query
object, to produce a similarity rank for each model in each
feature space. A similarity score is then defined according
to said rank. The combined score over all feature spaces is a
linear combination of the scores per feature space, where the
weight for each feature space is determined by the relative
ranks between query objects in that feature space (assum-
ing the query contains several relevant objects). Bustos et
al. [BKS∗04] use a classified set of models as a training set
to define a purity function for each query and feature vector.
The purity function indicates the number of training sam-
ples from the same class that are retrieved from a k nearest
neighbors search using that feature vector. Then the feature
vectors are combined linearly using the purity function val-
ues as weights.

We employ a simple but effective approach to combine
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similarity scores from several feature spaces. Any number
of different descriptors can be plugged into our system. We
observe that for shape retrieval, a model that is very similar
in one specific descriptor space is most likely more relevant
than a model that is only moderately similar in several de-
scriptor spaces. Furthermore, for each query and descriptor
space, the most similar object might still be quite different
from the query object if the descriptor is inadequate for that
type of model.

We therefore look for models that are exceptionally sim-
ilar to the query object, relative to all pairs of models in the
dataset. To this end, we compute for every descriptor d the
mean distance µd and standard variation σd between all pairs
of shapes in the dataset. If the dataset is quite large, these
values can be estimated over a few small random subsets of
the dataset. For each query model Q and descriptor space d
we have a list of neighbors M ∈ Nd(Q) with corresponding
distances Dd(Q,M). To normalize distances in different de-
scriptor spaces we compute a similarity score for each model
in each descriptor space, which is a reversed standard score:

Zd(Q,M) =−(Dd(Q,M)−µd)/σd .

A high score means the distance between models is below
the average distance between any two models by a certain
amount of standard deviations. This normalization allows us
to compare distances in different descriptor spaces to obtain
a unified similarity rank. We define the normalized score of
each model M with respect to the query model Q as the max-
imum of its score over all descriptor spaces:

S(Q,M) = max
d

Zd(Q,M)

where Zd(Q,M) = 0 if M is not one of the nearest neighbors
of Q in descriptor d. Note that we do not assume we have the
full affinity matrix between all models in the system, so we
only use the data of the nearest neighbors for these calcula-
tions. The nearest neighbors for each query object Q are the
k models which have the maximum normalized score value.

Figure 5 shows an example of nearest neighbors search for
two models. For each model on the left, the nearest neigh-
bors are displayed on the right, ordered in two rows from
left to right by their relevance score. For the bike model,
LFD descriptor works well, and indeed, our feature selec-
tion method retrieves the same models as LFD alone. For
the bird model, only the first model retrieved by LFD is rel-
evant. Note that there are several other bird models in the
dataset which are a better match for the query object, as can
be seen in Figure 5c. Using our feature selection mechanism,
we retrieve four relevant models out of the first eight, where
the first nearest neighbor is retrieved using LFD and the rest
are retrieved using D2 descriptor.

5. Dataset and Implementation Details

In order to demonstrate the soundness and scalability of the
solution, a user evaluated system is presented which con-

Figure 5: Examples of k-NN search for two models. (A)
A case where LFD works well. (B) Using LFD yields one
relevant model out of the first eight. (C) Using a combination
of all descriptors yields four relevant models out of the first
eight.

tains a dataset of 4,573 shapes, collected from two SHREC
datasets [VGD∗10,LGA∗12] and the Shape COSEG Dataset
[WAvK∗12, SvKK∗11]. Our implementation is divided into
two separate systems. Computing shape descriptors and
finding the k nearest neighbors of each shape was done as
a pre-process in Matlab, and the user interface and map gen-
eration algorithm were implemented using C#.

The user interface displays a grid of shapes, pre-rendered
to image files, and enables the user to navigate in the shape
space by dragging the mouse cursor over the shapes. The
grid pans according to the drag command similar to the way
it is done in online maps. As soon as the user releases the
mouse button when dragging, the map is populated with
new shapes. For zooming, we provide an interface similar
to online mapping services, e.g. Google Maps, in which the
user sees the current zoom level and can click to zoom-in
or zoom-out of the current map. The map can be initialized
from a random location or from a manually set location, at
the user’s discretion. In addition, we provide a double-click
feature which allows the user to quickly focus on a single
shape. When the user double-clicks on a shape the map is
reinitialized around the selected shape. This is useful to give
precedence to nearest neighbors of the focused shape over
neighbors of neighbors which may have been selected be-
fore the focused shape appeared on the map.

New shapes are loaded almost instantly after every navi-
gation action. Internal profiling of the system shows that the
map generation algorithm takes between 0.001 and 0.02 sec-
onds for each page, depending on the number of new shapes
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that are fetched. The bottleneck of our system is loading
the representative image files from disk which takes a por-
tion of a second. This shows that the algorithm is suitable
for handling large datasets with ease. Since the number of
candidate shapes for each cell in the grid is bounded by a
constant, regardless of the number of shapes in the dataset,
the time complexity of displaying the map should be the
same for very large datasets such as millions of shapes. The
space complexity is linear since only k nearest neighbors
are kept for each shape, so running the system with a very
large dataset does not require extraordinary computational
resources.

6. Evaluation

To evaluate our method, we conducted a user study that com-
pared it with a relevance feedback method, implemented us-
ing the same dataset and same k-NN structure as the dynamic
map. The system initializes using a specific model as a start-
ing point. In the relevance feedback system, the first 20 near-
est neighbors of the initial model are displayed on a grid five
cells wide and four cells long. The user can then select one,
two or three shapes to focus on, and clicks a button to fetch
the next set of shapes. The nearest neighbors of all selected
models are marked as candidates, and the score of each can-
didate is accumulated for each selected model which is a
neighbor of the candidate. This way candidates that are mu-
tual neighbors of several selected models are preferred. Then
the 20 candidates with the maximum accumulated similarity
scores are displayed to the user for another round of rele-
vance feedback.

Note that the described system is far more simplistic than
a state of the art relevance feedback method; such methods
generally employ powerful learning algorithms which help
improve the results with every iteration. Nevertheless, it is
a representation of the typical user interface of a relevance
feedback system, which provides the basic user experience
aspects of relevance feedback systems.

Setting. We employed a 2(method) x 3(task) within-subject
design to compare performance and subjective opinions
of participants. The main variable, method, describes the
search system used and included either the Dynamic Map
method (DM) or the Relevance Feedback method (RF).

The second variable, task, describes the tasks that partici-
pants were asked to perform. Three different task types were
given:

1. Choose a model out of the collection according to subjec-
tive preferences (e.g., “find a dining room chair that you
would like to have in your home”)

2. Find multiple models in a category (e.g., find ten different
types of four legged animals such as horse, cow, dog, etc).

3. Given a specific reference image of a model, find that spe-
cific model in the collection (e.g., a model of an electric

guitar with very distinct body shape was provided. The
starting point was a collection of guitars).

For each task type, we devised two similar tasks to be per-
formed. For example, for the third task, either an image of
a guitar or an image of a person was given. In addition,
for each task, a starting shape was determined. The start-
ing shape was located in the vicinity of the target/s (e.g., for
finding a dining room chair, the starting point was a swivel-
ing office chair). For the DM method, the starting shape was
used as a basis to create the initial grid. For the RF method,
the nearest neighbors of the starting shape were presented as
the initial grid.

Sixteen (16) participants took part in the experiment.
Participants were mainly students from a local university.
Eleven participants were male and five were female with an
average age of 29.5 (SD = 5.2). All participants had previous
experience with searching images on the Web, and no partic-
ipants had previous experience with searching 3D models.

Participants were seated in front of a 22" screen with
1600x900 pixel resolution. This allowed for a grid of 5x4
models to be displayed. Participants were then presented
with one of the two methods. The user interface features
were first explained to the participants, who were then al-
lowed to freely browse around the model space using the in-
terface until they felt comfortable using it. Participants were
then given the three tasks one after another and were asked to
perform each task as best as possible. When they completed
all three tasks, participants were asked to fill in a question-
naire on their subjective opinion of the interface. Participants
were then presented with the second interface on which they
completed the same procedure (using three different tasks of
the same task type). At the end of the experiment, a compar-
ative questionnaire was given. The order of interfaces (which
interface was first used) as well as which set of tasks to per-
form on which interface was counterbalanced.

Results. Figure 6 presents the average amount of search time
per task for both methods. A two-way ANOVA was con-
ducted to assess the time differences between the two meth-
ods. Results indicate that it took participants significantly
less time to search with the DM method than with the RF
method, F(1,15) = 44.1, p<0.001. A post-hoc analysis using
the bonferroni adjustment, examining each task separately,
showed that there were also significant differences between
the two methods in tasks 1 and 3 with task 2 being very close
to significance (p=0.052). It should be noted that seven par-
ticipants in the RF condition were unable to complete task
3 compared to only one participant who was unable to com-
plete the task in the DM condition.

Next, we analyzed participants’ opinion of the interfaces.
Table 1 presents the set of statements presented to partici-
pants after interacting with each method (DM and RF) as
well as their average responses. Ratings were given on a 7-
point Likert scale to indicate how much participants agreed
with each statement, ranging from strongly disagree (1) to
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Statement DM RF p-value
The search was enjoyable 5.43(1.26) 3.65(1.5) 0.003
The system was effective for the search purposes 4.56(1.67) 3.50(1.71) 0.065
The system limited my possibilities 4.31(1.4) 5.25(1.52) 0.095
During the search, I stumbled across items I didn’t think about 5.25(1.52) 5.06(1.94) 0.687
I easily understood how to use the interface 5.56(1.71) 6.12(1.58) 0.331
I easily understood the efficient way to conduct the search 5.12(1.45) 3.68(1.30) 0.005
It was easy to conduct the searches 5.12(1.31) 3.37(1.58) 0.007
During the search I felt frustrated 3.37(1.66) 4.93(1.73) 0.021

Table 1: Average ratings (and standard deviation) of the two interfaces. Ratings are given on a 7-point Likert scale ranging
from strongly disagree (1) to strongly agree (7). P-values of the Wilcoxon signed test, comparing the two interfaces are provided.

Statement DM RF No opinion
Which system was more effective for task 1? 11 3 2
Which system was more effective for task 2? 11 5 0
Which system was more effective for task 3? 9 4 3
Which system was more effective overall? 11 3 2
When you have a vague idea of the search, which system is better? 12 4 0
When the target of the search is clear which system is better? 8 7 1
Overall, which system do you prefer? 12 2 2

Table 2: Direct preferences between the two interfaces (N=16).

Figure 6: Average search time for the three tasks in both the
DM and the RF methods (N=16). Error bars display 95%
confidence interval.

strongly agree (7). With ranked ordinal data and a relatively
small sample size, it is recommended to use a nonparamet-
ric statistical test [HCB74]. We therefore used the Wilcoxon
signed nonparametric test to examine differences in ranking
between the groups. As can be seen in Table 1, results indi-
cate a preference to the DM method on almost all questions.

Finally, we analyzed the direct comparison questions
given at the end of the experimental session. These results
are presented in Table 2.

Evaluation Summary. Overall, participants clearly pre-
ferred the DM method over the RF one. This is demonstrated
both in the direct comparison results (Table 2) and in the in-
dependent ratings of each interface (Table 1). Participants
felt that the DM interface was more enjoyable, effective, ef-
ficient and easy to use. Together, these measures are used

as an indicator of a system’s usability [Bro96], thus our re-
sults suggest that the DM method is more usable than the
RF method for the given search tasks. Better efficiency is
also indicated by the fact that participants completed their
tasks faster using the DM method.

7. Discussion and Limitations

We presented a shape exploration technique where objects
are laid out on a two-dimensional dynamic map that is lo-
cally updated according to user navigation. One of the most
prominent features of our approach is the locality of the so-
lution. The local approach enables the construction of an un-
constrained, easy to use and scalable system; it can support
massive datasets containing millions of models with ease. At
the same time, some limitations stem from this locality.

Since we do not keep models outside the current bound-
aries of the map, models may be repeated during a browsing
session, appearing at multiple locations on the map. In prac-
tice, it is possible to prevent some repetition of models by
excluding models that were recently seen from the search
space and remembering previously generated patches on the
map. However, this requires a delicate balance, since keep-
ing previously seen regions of the map creates global con-
straints that often cannot be fully satisfied. Informal feed-
back from participants in our user study suggests that users
do not feel the repetition of models is hindering the user ex-
perience, since it is usually easy to avoid by navigating away
from seen models, or using the zoom ability to view a greater
variety.

On the other hand, some shapes may have very few rele-
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vant neighbors in the k-NN graph, and therefore are likely to
be excluded from the generated maps. This is due to the vot-
ing mechanism which ensures only shapes that are relevant
to the surrounding appear on the map, thus pruning outliers.

The presented method is most suitable for free-form
search, where the user does not have a specific target in
mind, and the goal is to browse a variety of shapes rather
than retrieving the single most relevant shape. A primary
goal of the dynamic map is to aid the refinement of 3D object
search. As such, it is our vision that the technique is used in
tandem with keyword shape search. In such a setup, the dy-
namic map can be seeded around an shape which is the best
match for the textual keyword search, to provide the user
with a variety of objects that resemble the best match. The
map generation method is decoupled from the construction
of the k-NN graph, which makes the method applicable for
other domains as well, such as searching images, text docu-
ments or any kind of high dimensional data.
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