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ABSTRACT 

We present a novel system for browsing through a very 

large set of images according to similarity. The images are 

dynamically placed on a 2D canvas next to their nearest 

neighbors in a high-dimensional feature space. The layout 

and choice of images is generated on-the-fly during user 

interaction, reflecting the user's navigation tendencies and 

interests. This intuitive solution for image browsing 

provides a continuous experience of navigating through an 

infinite 2D grid arranged by similarity. In contrast to 

common multidimensional embedding methods, our 

solution does not entail an upfront creation of a full global 

map. Image map generation is dynamic, fast and scalable, 

independent of the number of images in the dataset, and 

seamlessly supports online updates to the dataset. Thus, the 

technique is a viable solution for massive and constantly 

varying datasets consisting of millions of images. 

Evaluation of our approach shows that when using 

DynamicMaps, users viewed many more images per minute 

compared to a standard relevance feedback interface, 

suggesting that it supports more fluid and natural 

interaction that enables easier and faster movement in the 

image space. Most users preferred DynamicMaps, 

indicating it is more exploratory, better supports 

serendipitous browsing and more fun to use. 
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INTRODUCTION 

As huge image collections become common in the Web and 

various digital libraries, it is increasingly important to allow 

users to easily search and browse these collections in fast 

and intuitive ways. Many commercial Web search engines 

have developed technologies to allow users to search for 

images, mostly focusing on keyword search with images 

presented in a grid ordered by some sort of relevance 

measure. While text-based directed search can be effective 

for many image search tasks, studies have shown that image 

search is often more exploratory in nature than Web search, 

and that browsing is an essential strategy when looking for 

images [1, 6, 21]. Still most commercial systems lack 

support for exploratory search and do not provide means for 

serendipity in the search process [13, 21].  

To address this gap, various research systems have looked 

into browsing as a complementary tool to text-based search 

methods [8, 23]. One useful way of browsing through 

images is by using similarity. Users often look for images 

that are similar to a given image, and browsing according to 

similarity between images has been shown to be useful [20,  

25]. A prominent method for browsing images according to 

similarity uses relevance feedback techniques, which refine 

search results according to a selection of preferred images 

made by the user [37]. At each relevance feedback step, the 

user is presented with a new set of images based upon past 

selections. However, the navigation experience with this 

approach is not continuous and it requires the user to go 

over a large collection of images and select the relevant or 

irrelevant ones at each step.  

A possibly more intuitive approach is to lay out the images 

on a two-dimensional grid allowing users to navigate over 

them in a continuous manner. We present DynamicMaps, a 

novel system to intuitively navigate through a massive, 

dynamic set of images. Navigation is done with a metaphor 

of an infinite two-dimensional canvas, where the images are 

presented and browsed through according to similarity. 

Figure 1 illustrates the browsing process. The user views a 

local subset of images, ordered such that similar images are 

next to each other (A). The user decides to pan towards 

images on the bottom right corner (B), and new images 

similar to the ones on the boundaries of the images in (B) 

appear to reveal another patch of the map (C). The currently 

displayed map can be figuratively viewed as a window that 

shows a local patch of an infinite canvas.  
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In order to support millions of images and more, given the 

high dimensionality of the image space (i.e., images have 

many different features that can be used: color, spatial 

structure, composition, texture, etc.), the challenge is in 

creating a cohesive grid that preserves the relations among 

all images. Conventional dimensionality reduction methods 

such as SOM, that can organize images on a 2D plane 

according to similarity, use global computations and are 

thus not scalable for a very large set of images [18]. We 

claim that for image-based navigation, the global 

requirements can be relaxed. In our solution, the local view 

is generated during navigation in response to user 

interactions, such that the relative positions of images 

respect only local high-dimensional relations.  

We build on our previous work of browsing 3D shapes 

[19], extending and implementing it to support the 

browsing of images. The specific contributions of the 

current paper are as follows. First, images suggest a very 

different feature space than shapes. Dealing with images 

requires very different semantics and the variation between 

images is much larger. Second, we tested a significantly 

larger and richer collection of objects (1 million vs. 4500) 

enabling us to examine claims of supporting a massive set, 

as well as the behavior of the system when dense data is 

available. Third, image search is a much more ubiquitous 

domain than shape search. Forth and for most, we focus 

here on the UI considerations rather than the technical 

solution, reporting on a controlled empirical user study that 

evaluates the presented method and discuss its advantages 

and limitations, specifically in context of image search.  

Evaluation of DynamicMaps, comparing it to a standard 

relevance feedback technique, showed that such similarity-

based navigation enables an open-loop exploration, where 

users can quickly and seamlessly direct the search towards 

relevant images of their choice without the need to 

sequentially go over the images and select the relevant 

ones. Using DynamicMaps, users viewed many more 

images per minute compared to a relevance feedback 

interface, affording a quicker and more natural method of 

interaction. Our results indicate that most users preferred 

DynamicMaps thinking it is more exploratory, better 

supports serendipitous browsing in which the user explores 

unknown regions of a large dataset, and more fun.     

RELATED WORK 

The majority of work done on image retrieval focuses on 

the back end of the search in image indexing and content-

based image retrieval (CBIR) (see survey in [9]). However, 

as our major contribution is with the design and evaluation 

of an image browsing user interface, we focus on the user 

experience side and first review systems that support image 

browsing and specifically similarity-based image browsing. 

We then briefly review related work on relevance feedback 

and dimensionality reduction methods.  

Image browsing 

Images have several characteristics that makes image 

search different than text-based search. Unlike text 

documents, the content of an image can be grasped at a 

glance, and a large number of images can be presented to a 

user at once. In image search, often the user does not have 

an exact target in mind [7]. Furthermore, images often lack 

textual cues and might have many different meanings 

embedded in a single image [30], making them difficult to 

support with only keyword-based search. For example, if 

the user is looking for a scenery image to add to a 

presentation, the user would not necessarily know how to 

phrase the search terms or even exactly which image he or 

she is looking for. Moreover, images presented in the first 

page of a text-based search result are not necessarily better 

than those presented in the following pages. Consequently, 

users have to sequentially scan these results spending 

considerable effort finding relevant images. Still, most 

current systems focus on providing text-based image 

querying rather than navigational support even though 

studies have shown that image browsing can improve in 

achieving user's search needs [8, 20, 23]. 

To address these needs, some research systems focus on 

supporting various browsing capabilities to enable 

navigating through images. For example, browsing specific 

clusters of images [23], browsing hierarchies that are 

 

Figure 1. Browsing images using DynamicMap. A region of photos is displayed ordered by similarity (A). Dragging the map to the 

upper left corner (B) reveals new images which are similar to images in the dragging direction (C). 



automatically built according to visual and semantic 

similarities [17], or browsing along conceptual dimensions 

according to hierarchical faceted metadata [36]. Similarly, 

some commercial systems added interactive visual content-

based search methods that allow browsing by similar shape 

and/or color. The “similar images” feature, allows users to 

search for images similar to a certain image, utilizing 

relevance feedback methods. 

Laying out images on a large canvas allows users to browse 

the images according to some organization of their structure 

using pan and zoom interactions. In [8], the results of an 

initial query can be browsed on a zoomable user interface 

(ZUI). In [23], images were clustered into conceptual 

regions. The user can continuously pan across this plane 

and zoom in or out of any particular region. In JustClick 

[12] a topic network is first generated and browsed through. 

Representative images of a topic are then organized on a 2D 

hyperbolic plane according to similarity.    

In the works above, the images are laid out according to 

some measure of distance (in similarity) between them. 

However, when browsing images, there is no need for an 

accurate representation of the original distances between 

images. In fact, an even spread of images over the canvas 

can be more beneficial than an accurate representation of 

the original geometry [25], especially in cases where the 

original data includes very distinctive clusters which may 

appear too far apart for easy navigation. Indeed, the most 

common way to lay out a set of images is on a two-

dimensional grid. Studies have found that arranging a set of 

thumbnail images on a single-page grid according to their 

similarity can be useful for users in an image browsing task 

[20]. Strong and Gong [32, 33] employed this idea and 

organized a collection of images based on similarity using 

an SOM-based algorithm. Users could browse the image 

collection using pan and zoom interactions. According to 

the authors their system could support browsing with up to 

10,000 images. Similarly, in PhotoMesa [3], images are laid 

on a large 2D grid. Users can browse through a large 

collection of images, panning to browse horizontally or 

vertically through the image collection. Here, zooming out 

enabled seeing the photos semantically grouped into pre-

organized categories.  

The systems mentioned above work with a limited number 

of images and are not scalable beyond several thousands of 

images. Thus, they are not suited for large repositories that 

exist in the Web today. Our work builds upon the idea of 

browsing images on a large 2D canvas, and the works in 

[20, 24, 32] that present similar images together on a grid. 

However, we apply it to a dataset of virtually unlimited 

size, finding solutions for interacting in such a large image 

space.  

Relevance feedback 

Many recent search and retrieval systems, including image 

retrieval, utilize relevance feedback [27], a method to refine 

search results using selection of preferred elements. Suditu 

and Fleuret [34] presented an image retrieval system that 

features iterative relevance feedback for a very large set of 

images. At each step, the user is presented with a set of 

images, and selects a single image that is the closest match 

to the desired query. Then a new set of images is displayed 

and the process is repeated.  

While this process may be effective at filtering relevant 

images, the use of relevance feedback in commercial search 

interfaces is still relatively rare [28]. One possible 

explanation is that it requires users to make relevance 

judgments on each item, which is an effortful user task [28]. 

Relevance feedback tends to work best when the user 

selects multiple objects as relevant as well as some objects 

as irrelevant. However, selecting multiple objects is 

cumbersome for most users. This is amplified in image 

search where extractable low-level features (e.g., color, 

texture, shape) may not necessarily match high-level 

perception-based human interpretation [37].  

Dimensionality reduction  

Dimensionality reduction is a wide area that has been 

extensively researched over the years. Common techniques 

such as multidimensional scaling (MDS) [4] or locally 

linear embedding (LLE) [26] create a global map that aims 

to preserve the distances among the high dimensional data 

points. In image search, a similarity measure between 

images is first computed, after which a visual map of the 

image collection is constructed according to the projection 

of the features to a 2D space. A number of papers use these 

techniques to map and then browse an images space 

according to the global relations among images [5, 23]. In 

order to better organize images, layout methods have been 

applied to MDS results to put them on a 2D grid [24]. Self-

organizing maps (SOM) [18] is a dimensionality reduction 

method that produces a grid which preserves similarity 

between elements without preserving the distance. Works 

such as [29, 32, 33] utilize SOM to visualize a relatively 

small set of images in a global cohesive map.   

Dimensionality reduction methods such as MDS or SOM 

work very well for small datasets. However they do not 

scale well and are too computationally intensive to be 

effective for massive datasets. In [16], an SOM was used to 

organize millions of documents. Due to the large volume of 

the dataset, special tools and methodologies had to be 

developed, yet still, several weeks of computation time 

were required. In addition, in order to add or remove 

images to the dataset, the computation process needs to be 

redone. Since our method relies only on local relationships, 

our technique is computationally inexpensive and thus 

highly scalable, as well as dynamic, allowing the addition 

and removal of data during execution. 

DYNAMICMAPS 

We first describe the map generation process (for a detailed 

description see [19]). We then describe the way we 



computed the image nearest neighbors that is used in the 

map generation process. Next, we describe the zoom levels 

mechanism that was built to support browsing through 

different levels of similarity. Finally, we explain how users 

can focus on a single image. 

Map generation 

The grid-like map is instantly generated during user 

interaction to keep a sense of continuity. The generation of 

local neighborhoods in the map is based on the assumption 

that for high dimensional data such as images, short 

distances are more accurately measured than long distances. 

Even for a human observer, the task of deciding which 

images are more similar to each other is easier for a set of 

similar images than for a set of very different images. This 

carries over to automatically computed distance measures 

as well. We thus use only the shortest distances between 

images in our dataset. Only the distances to k nearest 

neighbors (with k being a small positive integer) of each 

image in the dataset are considered. Images farther apart 

relate to each other by a sequence of nearest neighbors that 

connect them, utilizing short distances in the whole set. The 

optimization problem becomes one of maximizing the 

similarity of nearby images, such that each image is 

surrounded by similar images. The result is a continuous 

map in which images show a gradual change over local 

neighborhoods. A dense set is expected to have shorter 

distances than a sparse set, hence our method is especially 

suitable for massive datasets. 

The input to the map generation process is a precomputed 

list of nearest neighbors and their similarity score (see next 

section) for every image in the dataset. The map can be then 

seeded around a specific image or constrained by any 

number of images. As the user is navigating by panning the 

map, the map is extended locally to the region of interest, 

using previously placed images as constraints. The map is 

generated by iteratively filling in empty cells in the grid. 

Each cell is assigned with the most compatible image by 

calculating the best match of the closest neighbors of 

images that are already assigned to adjacent cells. Images 

that already appear on the map are excluded.  

The order in which empty cells are selected has a great 

effect on the mapping. We select the vacant cells in 

accordance with the user’s actions; in general, we give 

precedence to cells that have as many reference images as 

possible. However, since the map is a regular grid, often 

there will be ties and many cells will have the same number 

of reference images. We break ties by selecting the cell 

which is closest to the direction the user panned to. This 

causes the grid to start growing from the user’s focus area 

on and outwards into the rest of the map. Figure 2 illustrates 

the order in which empty cells in the grid are filled. The 

user drags the map two images up and one image to the 

right. The center of the user’s viewport thus moves on the 

map in the opposite direction; two cells down and one cell 

to the left. The cells marked with numbers 1 to 6 are closest 

to the direction of movement and therefore will be filled in 

their respective order, followed by the rest of the cells on 

the grid. Existing images which are closer to the panning 

direction effectively have more weight in the map 

generation, since their neighbors are selected first.  

To maintain stability of view such that images that were 

already displayed are not repeated during browsing, we 

keep images that were placed on the map in their relative 

global position and prevent them from reappearing on the 

map again. That is, we save the 2D structure of the view of 

the created map, so if the user returns back to a previously 

visited location (e.g., pans right and then pans left), the map 

is not recreated but rather the previously shown map is 

presented. The 2D structure is kept until the map is 

rearranged around a new image. The stability of view 

supports the important guideline of reversal of actions [31], 

since users can easily return back on their steps. 

Image nearest neighbors  

The map generation is decoupled from the nearest 

neighbors computation. In our implementation, we find the 

k nearest neighbors of every image using three image 

metrics, or image descriptors. Each of the following three 

descriptors is computed for each image in the dataset. The 

distance between two images in each descriptor space is the 

Euclidean distance between the image descriptors. Average 

color and color histogram are popular descriptors used in 

image retrieval [10]. We used them as described below 

combined with a third descriptor. In other implementations, 

it is possible to choose different descriptors or different 

weights for each descriptor.  

Average Color. The image is divided into 16 segments, a 

four by four grid, and the average color in each segment is 

 

Figure 2: The order in which cells in the map are filled is 

relative to the direction of browsing. In this example, the user 

dragged the map two images up and one image to the right. 

The gray dot and red dot, respectively, mark the previous 

and new center of the viewport. The numbers state the order 

in which the first six images on the map are filled. 



computed. Similar images in this metric tend to have a 

similar composition. Of course, the image partitioning does 

not necessarily need to be four by four, but we find this 

partitioning appealing in the sense that it seems fine enough 

to distinguish between images with significantly different 

compositions, yet sufficiently coarse to ignore small 

changes in composition of similar images. 

Color Histogram. A joint color histogram for RGB values 

is computed. Each color channel is divided into four bins, to 

create a total of 64 bins for every color combination. The 

number of pixels that fall in each bin is counted and divided 

by the total number of pixels in the image. Similar images 

in this metric have similar color distributions, which 

suggest similar atmosphere or surrounding. This descriptor 

is less sensitive to translation, rotation or reflection of the 

images compared with the average color descriptor. 

Spatial Envelope. The spatial envelope was described in 

[22] and named gist descriptor since it captures the gist or 

context of a scene. The gist descriptor describes the spatial 

structure of a scene using a set of spectral signatures which 

are specifically tailored for the task of scene recognition. It 

was shown that in the gist descriptor space, scenes that 

belong to the same context are projected close to each 

other. We use the code provided by the authors to compute 

the gist descriptor of every image in the dataset. 

The three descriptors are calculated for each image, and k 

nearest neighbors are found for each descriptor space 

separately. The distance from the image to each nearest 

neighbor in each descriptor space is kept as well. The three 

lists are then merged to a single list of k nearest neighbors 

by computing a normalized score for each candidate that 

appears in one or more lists. 

Zoom levels 

Our system supports semantic zooming by allowing 

zooming out to see a wider variety of images as well as 

enhance navigation capabilities, and zooming in to see 

more similar images. Zooming out brings the user to a 

higher level where images are less similar to each other, 

and thus it is possible to browse further away in the 

similarity matrix, and zoom back in whenever reaching an 

area of interest. This enables more diversity within the 

results, which was shown to be important in image search 

[14]. When the user zooms out, he or she browses through 

the higher level which is much smaller in size and thus 

much more diverse than the original level. 

Zoom levels are implemented by automatically preselecting 

high-level delegates for every image in the dataset from its 

nearest neighbors list. To create a smaller, higher level 

delegate map, for each image in the dataset, we check 

whether one of its nearest neighbors is already a high-level 

delegate. If none of the nearest neighbors of the image is a 

delegate, the image itself becomes a delegate for all of its 

neighbors. The same process can be done when adding a 

new image to an existing dataset. We then create a higher 

level map using the chosen delegates. This process is 

repeated recursively to create multiple zoom levels. For 

example, if starting at a 1,000,000 images, and using k=20 

nearest neighbors, since every delegate represents around 

20 images, the second level will include 50,000 delegates, 

the third level 2500 and the fourth and final zoom level will 

include 125 images.  

Zooming is always done according to a reference image. 

The user hovers over an image of his or her choice and uses 

the mouse scroll to change the zoom level. We regenerate 

the map around that image in a lower (or higher) zoom 

level, and vice versa for zooming out. To keep the user 

oriented, when zooming, the reference image does not get 

replaced by its delegate. Figure 3 illustrates the zooming 

out process. In addition, there is also a zoom widget in the 

control panel which, if chosen, zooms in or out according to 

a click with the center image as the reference image. 

Focusing on an image 

We provide the user with the option to focus on a single 

image by double clicking on it. This regenerates the map 

around the clicked image in the lowest zoom level 

(maximum similarity). The images in the rebuilt map are 

  

Figure 3. Zooming out. The user hovers over an image and uses the mouse scroll to zoom out. The image stays as a reference point and 

the images around it are retrieved from a higher zoom level (red box is only for illustration and is not part of the interface). 



then more likely to be similar to the image in focus rather 

than the images around it. This option also provides the 

user with another way to quickly zoom in from higher 

levels. 

EVALUATION 

In order to evaluate DynamicMaps, we compared it to a 

standard relevance feedback method. Relevance feedback 

(RF) was chosen as the most prominent method for 

similarity-based browsing, and the only one we are aware 

of, that can support a corpus of millions of images. Another 

possibility was to compare DynamicMaps to another global 

approach (such as SOM). However, this would have limited 

the evaluation to the level of thousands of images (other 

global approaches do not scale more), not fully evaluating 

the utility of our system. For simplicity, we decided to 

implement a standard RF method rather than a more 

complex one (i.e., that might include negative feedback).  

We employed a within-subject design to compare 

performance and attitudes of participants. The main 

variable interface describes the search interface used: 

DynamicMaps (DM), or relevance feedback (RF).    

Methodology 

Participants. A total of 24 participants took part in the 

study, 11 were male and 13 were female with an average 

age of 27.1 (SD = 5.1). Participants were mostly students of 

a large university from a wide range of departments and 

faculties. All had normal or corrected-to-normal eye vision. 

15 participants reported searching on the Web for images 

every week, while 5 participants reported searching every 

two weeks or so and 4 reported a lower rate. Image search 

task reported including finding images for presentations, 

looking for images for study purposes, looking for products 

and more. Most participants indicated using Google images 

as their main image search tool.  

Interfaces. Both interfaces show a grid of 6x5 images at 

any given time. For the DM interface, we used the system 

as described above, initialized with the starting image at the 

center, around which the algorithm builds the initial screen 

grid of 30 images. For the RF interface, the system 

initializes showing the starting image on the upper left 

corner followed by the 29 closest neighbors on a grid. The 

user can then select up to 3 images and click a button 

(labeled “more images”) to fetch the next set of images 

closest in similarity to the chosen images (ordered by 

similarity). At any time, the user can press the back button 

and return to the previous screen. Both interfaces included a 

“restart” button that returned the view to the initial screen 

formed by the starting image. As a starting point, users 

could enter an image number in a provided textbox around 

which the system initializes as mentioned above.  

Tasks. Tasks were designed to be open-ended and reflect 

real-world search needs (similar to [24, 36]). Two general 

tasks were defined for the within-subject design. In each 

task participants were asked to find images that would best 

fit text slides of a given presentation. For example, the first 

presentation was on a non-profit organization titled “the 

society of preservation of nature”. The initial slide was a 

title slide, the second slide talked about the organization’s 

mission, the third slide talked about the history of the 

organization and the final slide talked about the major 

active projects the organization employs today. All slides 

included only text with no color or graphic design. 

Participants were asked to find up to three images that 

would best fit each slide. The second presentation was 

similar in nature and had to do with architecture. For each 

task, participants were given four starting points in the 

interface. This emulated four possible keyword search 

queries. The starting points were chosen as single images 

relevant to the task (for example, images of animals or 

nature for the previously mentioned task). 

Dataset. We downloaded one million images from the free-

to-use (creative commons) Flickr image hosting service. 

The image collection spans photos with an upload date 

within a range of 400 days, where for each day in the range 

a few thousands of random images were selected. This has 

resulted in a diverse dataset which contains images of many 

different types, such as landscapes, urban areas, people, 

wildlife, birds, vehicles and more. Computing the k nearest 

neighbors for each image was done as a preprocess using 

Matlab with k=20 and took a few hours for the entire 

dataset.   

Procedure. Participants were seated in front of a 22” screen 

with 1440x900 screen resolution. Participants were then 

presented with one of the two interfaces. The user interface 

features were first explained to them, after which 

participants performed one practice task on which they 

were instructed to use the interface until they felt 

comfortable with it. Participants were then given one of the 

two tasks and were asked to perform the task as best as 

possible. No time limit was given for the task. After they 

completed the first task using the first interface participants 

were asked to fill in a questionnaire asking their subjective 

opinion of the interface they just used. Participants were 

then given the second interface on which they completed 

the same procedure using the second task. All interactions 

with the interfaces were logged and later analyzed. At the 

end of the experiment a comparative questionnaire was 

given and participants were asked to comment on each 

interface. The order of interfaces (which interface was first 

used), as well as which task set was used with which 

interface was fully counterbalanced, creating 4 different 

configurations (six participants in each configuration). 

Results 

Order effects 

To rule out order effect (whether participants started with 

the DM or the RF interface), we performed a between-

subject ANOVA with interface order as the independent 

variable on both task completion time and on number of 



unique images seen. No effect was found for both variables. 

Next, to ensure there were no differences between tasks we 

performed a within-subject ANOVA with task as an 

independent variable.  Again, no effect was found for both 

task completion time and number of images seen. 

Completion time 

On average, it took participants 805.8 seconds (~13.5 

minutes) to complete the task in the DM interface (SD = 

334) and 761.5 seconds (~12.7 minutes) in the RF interface 

(SD = 348).  A one-way repeated-measures ANOVA on 

task completion time did not find these differences to be 

significant, F(1,23) = .55, p = .47.  

Amount of Interaction 

We compared the amount of user interaction with each of 

the interfaces. In the DM interface, an interaction is 

performed either by dragging the mouse to pan the view in 

order to bring up more images (number of pans), by 

zooming in or out (number of zooms), or by double-

clicking on a single image to bring it to the center. In the 

RF interface, an interaction translates into a “more images” 

or “back” press which brings up the next or previous set of 

images (number of presses). Thus, we compared the 

number of pans + zooms + double clicks in the DM 

interface with the number of combined “more” and “back” 

presses in the RF interface. Results indicate that there were 

many more interactions per task in the DM interface (M = 

158.4, SD = 93.3) than in the RF interface (M = 35.9, SD = 

31.4).  A one-way within subject ANOVA on number of 

interactions showed these differences were significant, 

F(1,23) = 90.9, p < 0.001. 

Amount of images seen 

Analyzing the log files, we summed up the amount of 

images seen in each interface. We examined both the total 

amount of images seen in a specific task, and the total 

amount of unique images seen, since some images may 

appear several times during the same task. With the RF 

interface, the total amount of images seen is equal to the 

number of interactions (as listed above) plus 1 (for the 

initial screen) times 30 (each screen showed a grid of 6×5 

images). In the DM interface, each pan adds a different 

amount of images to the screen depending on the pan 

position. We counted the 30 initial images, and then added 

the newly filled images in each pan. A zoom, restart, or 

doubleClick event brought 30 more images.  For the unique 

images seen, in both interfaces, we counted the unique 

images presented from the beginning till the end of the task.  

Because there were large individual differences in task 

completion time, we normalized these results over time and 

measured the total number of unique and non-unique 

images seen per minute. Results, presented in Table 1, 

indicate a large, significant difference in both total and 

unique number of images seen per minute. Users using the 

DM interface have seen significantly more total images per 

minute than when using the RF interface, F(1,31) = 98.2, 

p<0.001. Users using the DM interface have also seen more 

unique images per minute than users using the RF interface, 

F(1, 23) = 107.6, p < 0.001. 

Zooming 

All participants used the zooming feature often, with an 

average of 39.6 times per session (or 2.94 zoom events per 

minute). To better understand the usage of DynamicMaps, 

we analyzed the use of the zooming levels. Figure 4 shows 

the number of pans made and number of (non-unique) 

images seen in each zoom level. As can be expected, most 

interaction was done in the first zoom level, with interaction 

dropping heavily after the first level. 

 

 

Figure 4. Average number of pans made and number of 

images seen in each of the five zoom levels (level 1 being 

images that are most similar to each other). 

Subjective opinions 

After using each interface, participants were presented with 

a set of statements and were asked how much they agreed 

with each one on a 7-point Likert scale ranging from 

strongly disagree (1) to strongly agree (7). Table 2 presents 

these statements and the visitors’ responses with both 

interfaces. A Wilcoxon Signed Ranked non-parametric test 

did not find significant differences in ranking of any of the 

statements between the two interfaces.  

At the end of the experiment, we presented participants 

with a final questionnaire asking them for their preference 

of interface on a list of criteria (Table 3). Results indicate a 

 DM RF F p 

Task completion 

time (seconds) 

805.8 

(334.4) 

761.5 

(348.9) 

0.55 0.47 

Average number of 

images seen per 

minute 

230.0 

(51.9) 

104.5 

(51.0) 

98.2 <0.001 

Average number of 

unique images seen 

per minute 

98.4 

(21.1) 

49.3 

(18.6) 

107.6 <0.001 

Table 1. Task completion time and average number of unique 

and non-unique images seen per-minute (and standard 

deviation) per interface 

 



general preference toward the DM interface, although 

preference was not absolute. Most participants thought the 

DM interface was more efficient and preferred it overall. It 

is interesting to note that most participants thought the DM 

interface is better when there is a vague idea of the search 

target and for seeing a wide variety of images, while there 

was a general preference for RF when the target is clear. 

DISCUSSION 

Our results indicate that DynamicMaps provide a more 

interactive experience for the users and allows them to view 

a wider variety of images than previous methods. 

Participants viewed many more images (both unique and 

non-unique) per time with the DM interface compared to 

the RF interface. While the way of interacting in the two 

conditions is quite different, still, many more interaction 

events were measured in the DM compared to the RF 

interface. Thus, it seems that participants viewed more 

images by actively interacting more with the interface. It 

should be noted that we cannot be sure that participants 

actually saw all the images that were displayed on screen. 

RF actually forces the user to more closely examine each 

image, while DM better supports scanning through images. 

This may help to explain the large difference in the amount 

of presented images. 

DynamicMaps provides immediate and continuous 

interactive feedback that does not require the user to make 

conscientious sequential selections, but rather asks the user 

to visually choose a direction to follow based on general 

perceptive cues. Thus, it affords easier and faster movement 

in the image space, with less sense of commitment, 

enabling the user to see a wider variety of images (a fact 

also realized by participants in the subjective preference 

questionnaires). This can also be look at from a cognitive 

load perspective. Cognitive load in the information retrieval 

context can be seen as a measure of information processing 

effort a user expends to comprehend the visual stimuli and 

interact with the system [15]. Using the RF interface, the 

user needs to go over every image and explicitly provide a 

relevance judgment on the image, a process that requires a 

high state of cognitive load [2]. DynamicMaps is less 

cognitively demanding since the user does not need to make 

a decision regarding each and every image, but can rather 

follow general visual cues. As one participant wrote “I 

prefer DM. Less mouse clicking. Dragging is easier then 

thinking of which images will bring me closer. In DM you 

can see a larger range of images at once without the need 

to choose and click over and over”. 

Having easier interaction capabilities and viewing more 

images per time unit is more useful when the search is 

vague and it might be difficult to select specific images that 

lead directly to the target. It is then easier to experiment, 

and follow one or more visual search directions than to 

select specific images. Another advantage of faster and 

more interactive browsing is that it can better support 

serendipity in the search process, since users interact more 

and may stumble upon different areas. It is easy for users to 

explore regions they may not have envisioned. This was 

reflected in a statement of a participant: “It is possible to 

reach different directions, thoughts and ideas that I have 

initially not thought about”.  

Zooming was often used and was referred to by participants 

as being very useful. The Zooming option enabled the users 

to step back and get a wider view of the current corpus. It 

also supports getting a more diverse view, with the diversity 

level controlled by the user. Furthermore, using zoom out 

and pan, the user can view the different topics and content 

available in the current corpus using simple interactions. 

This can be useful to get an overview of the image corpus.  

No overall significant difference between the interfaces was 

found for task completion time. Completion time is often 

looked at as a measure of efficiency. However, in the 

current study, the task was open-ended and participants 

were asked to take as much time as needed to find the best 

possible images. Thus, we do not think that in this case 

Statement DM RF No pref 

Which system was more efficient? 12 8 4 

When you have a vague idea of the 

search target, which system is 

better? 

15 7 2 

When the search target is clear, 

which system is better? 

7 15 2 

Which system is best to see a wide 

variety of images? 

16 5 3 

Which system is easier to learn? 6 7 11 

Which system do you prefer 

overall? 

15 8 1 

Table 3. Number of participants preferring each interface on a 

list of criteria (N=24). 

 

Statement DM RF 

The system was efficient for the 

search tasks 

4.20 

(1.14) 

4.15 

(1.22) 

The system limited my options 4.75 

(1.69) 

4.91 

(1.28) 

The search was fun 4.63 

(1.24) 

4.33 

(1.16) 

I quickly understood how to use the 

interface 

5.87  

1.19) 

5.87 

(1.11) 

During the search I felt frustrated 3.25 

(1.64) 

3.54 

(1.84) 

I am satisfied with the images I 

picked for the presentation 

5.10 

(1.25) 

4.83 

(1.00) 

Table 2. Participants average ratings (and standard 

deviation) per interface on a 7-point Likert scale (N=24).  

 



completion time is an indicator of efficiency or quality. On 

the contrary, it might be that more time spent on the task 

indicates that the interface was more engaging and caused 

users to search more thoroughly. Similarly, other studies 

have found no correlation between task completion time 

and quality of results or user satisfaction [24].  

Finally, we note that many participants mentioned that 

DynamicMaps was enjoyable and the interaction with it 

was much more smooth and fun to use than the RF interface 

(e.g., “The [DM] system is enjoyable, it is easy to operate 

and it naturally flows”). We believe that this will be 

highlighted even more when using the system with touch-

based interfaces. With its pan-based interaction, 

DynamicMaps should be ideal for searching images on a 

Tablet computer, for which the playfulness of 

DynamicMaps would be even more prominent. 

Limitations and merits of the local solution  

One of the most prominent features of our approach is 

locality. The k-nearest neighbors technique and the greedy 

map generation process are critical for accomplishing 

scalability, and as a result we are able to seamlessly work 

with massive data sets. However, there are certain 

attributes, such as distance, which are not preserved, and 

altogether from an algorithmic point of view, our solution 

technique does not seek a global solution of a well-defined 

optimization problem. Rather, we navigate through low 

dimensional representations of the image space, and rely on 

user input to scan through the images. A potential limitation 

of this approach is that it is difficult to assess the quality of 

the outcome, and we cannot rigorously prove optimality or 

near optimality. Work in the future will include further 

investigation of the effects of locality. 

On the other hand, the local solution brings with it several 

strong merits: it is computationally inexpensive, highly 

scalable, flexible and dynamic. The local nature of the 

algorithm yields an efficient computational procedure. 

Computing a global solution may be computationally 

prohibitive and may present an over-constrained problem 

that leads to many conflicts, resulting in a solution that is 

not necessarily better than the one obtained by a local 

search. When considering massive sized image repositories, 

a computationally inexpensive approach which nonetheless 

produces high quality results is critical. DynamicMaps is 

also dynamic, and can easily handle frequent changes in the 

dataset. The local nature of the algorithm allows for a 

seamless addition of images, and other on-the-fly changes. 

This cannot easily be accomplished by other global feature-

preserving techniques.  

Another limitation of our system is that it may be difficult 

to find non-dominant concepts or particular images. If a 

concept rarely appears, the user will be unlikely to find it as 

it will be hidden within another area. This can be partly 

addressed by relaxing the stability of view allowing an 

image to appear multiple times in different contexts. 

However, a complete solution for this issue would have to 

involve combining our system with direct or faceted search.  

Combining browsing with direct search 

For browsing to be effective it needs to be complementary 

to direct keyword search, since using keywords is still the 

preferred method in image retrieval systems [11]. 

Furthermore, in order to browse, the user needs a way to 

approach the image space, which can be best done with 

direct search. One way to combine DynamicMaps with 

keyword search is by starting with a regular grid of images 

triggered by keyword search (such as provided by Google 

images), and allowing the user to choose an image around 

which the Map will be created to start browsing from. This 

is similar to how relevance feedback (“similar images”) is 

combined with keyword search today. Thus, keyword 

search can be used to first reach an area of interest, and then 

the search can be refined using browsing according to 

similarity (similar to the orienteering strategy [35]). 

Another way, which we started experimenting with, directly 

embeds keyword search within the current DynamicMaps 

interface. The user types in the search query, and the system 

presents the results (that match the query) already ordered 

according to similarity. The challenge lies in seamlessly 

extending browsing to images that are not directly related to 

the search query. 
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CONCLUSIONS 

We have presented DynamicMaps, a system for browsing a 

very large set of images on a 2D grid according to 

similarity using a metaphor of an infinite canvas. 

DynamicMaps enables a smooth, fast and more interactive 

experience that is best suitable for exploratory search, when 

the search target is vague. It is also useful for serendipitous 

browsing in exploring image regions not envisioned by the 

user and for getting a wider view of the image corpus. 

Further work would explore using semantic information in 

the similarity measures as well as combine DynamicMaps 

with keyword search. 
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